Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Adv ; 6(14): eaax5692, 2020 04.
Article in English | MEDLINE | ID: mdl-32270030

ABSTRACT

The transcriptional repressors Polycomb repressive complex 1 (PRC1) and PRC2 are required to maintain cell fate during embryonic development. PRC1 and PRC2 catalyze distinct histone modifications, establishing repressive chromatin at shared targets. How PRC1, which consists of canonical PRC1 (cPRC1) and variant PRC1 (vPRC1) complexes, and PRC2 cooperate to silence genes and support mouse embryonic stem cell (mESC) self-renewal is unclear. Using combinatorial genetic perturbations, we show that independent pathways of cPRC1 and vPRC1 are responsible for maintenance of H2A monoubiquitylation and silencing of shared target genes. Individual loss of PRC2-dependent cPRC1 or PRC2-independent vPRC1 disrupts only one pathway and does not impair mESC self-renewal capacity. However, loss of both pathways leads to mESC differentiation and activation of a subset of lineage-specific genes co-occupied by relatively high levels of PRC1/PRC2. Thus, parallel pathways explain the differential requirements for PRC1 and PRC2 and provide robust silencing of lineage-specific genes.


Subject(s)
Cell Differentiation/genetics , Cell Lineage/genetics , Cell Self Renewal/genetics , Gene Expression Regulation, Developmental , Mouse Embryonic Stem Cells/cytology , Mouse Embryonic Stem Cells/metabolism , Polycomb Repressive Complex 1/metabolism , Polycomb Repressive Complex 2/metabolism , Animals , Gene Silencing , Mice , Models, Biological
2.
Genes Brain Behav ; 11(3): 314-24, 2012 Apr.
Article in English | MEDLINE | ID: mdl-22212853

ABSTRACT

Immediate early genes (IEGs) are widely used as markers to delineate neuronal circuits because they show fast and transient expression induced by various behavioral paradigms. In this study, we investigated the expression of the IEGs c-fos and Arc in the auditory cortex of the mouse after auditory cued fear conditioning using quantitative polymerase chain reaction and microarray analysis. To test for the specificity of the IEG induction, we included several control groups that allowed us to test for factors other than associative learning to sounds that could lead to an induction of IEGs. We found that both c-fos and Arc showed strong and robust induction after auditory fear conditioning. However, we also observed increased expression of both genes in any control paradigm that involved shocks, even when no sounds were presented. Using mRNA microarrays and comparing the effect of the various behavioral paradigms on mRNA expression levels, we did not find genes being selectively upregulated in the auditory fear conditioned group. In summary, our results indicate that the use of IEGs to identify neuronal circuits involved specifically in processing of sound cues in the fear conditioning paradigm can be limited by the effects of the aversive unconditional stimulus and that activity levels in a particular primary sensory cortical area can be strongly influenced by stimuli mediated by other modalities.


Subject(s)
Auditory Cortex/physiology , Auditory Perception/genetics , Conditioning, Psychological/physiology , Cues , Fear/physiology , Genes, Immediate-Early/genetics , Transcriptional Activation/genetics , Acoustic Stimulation/methods , Animals , Avoidance Learning/physiology , Male , Mice , Mice, Inbred C57BL , Neural Pathways/physiology , Up-Regulation/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...