Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 212
Filter
1.
Proc Natl Acad Sci U S A ; 121(21): e2312755121, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38743628

ABSTRACT

Antigenic similarities between Zika virus (ZIKV) and other flaviviruses pose challenges to the development of virus-specific diagnostic tools and effective vaccines. Starting with a DNA-encoded one-bead-one-compound combinatorial library of 508,032 synthetic, non-natural oligomers, we selected and characterized small molecules that mimic ZIKV epitopes. High-throughput fluorescence-activated cell sorter-based bead screening was used to select molecules that bound IgG from ZIKV-immune but not from dengue-immune sera. Deep sequencing of the DNA from the "Zika-only" beads identified 40 candidate molecular structures. A lead candidate small molecule "CZV1-1" was selected that correctly identifies serum specimens from Zika-experienced patients with good sensitivity and specificity (85.3% and 98.4%, respectively). Binding competition studies of purified anti-CZV1-1 IgG against known ZIKV-specific monoclonal antibodies (mAbs) showed that CZV1-1 mimics a nonlinear, neutralizing conformational epitope in the domain III of the ZIKV envelope. Purified anti-CZV1-1 IgG neutralized infection of ZIKV in cell cultures with potencies comparable to highly specific ZIKV-neutralizing mAbs. This study demonstrates an innovative approach for identification of synthetic non-natural molecular mimics of conformational virus epitopes. Such molecular mimics may have value in the development of accurate diagnostic assays for Zika, as well as for other viruses.


Subject(s)
Antibodies, Neutralizing , Antibodies, Viral , Epitopes , Zika Virus Infection , Zika Virus , Zika Virus/immunology , Epitopes/immunology , Humans , Zika Virus Infection/immunology , Zika Virus Infection/virology , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Immunoglobulin G/immunology , Antibodies, Monoclonal/immunology , Molecular Mimicry/immunology
2.
Nucleic Acid Ther ; 34(3): 109-124, 2024.
Article in English | MEDLINE | ID: mdl-38752363

ABSTRACT

Recent FDA approvals of mRNA vaccines, short-interfering RNAs, and antisense oligonucleotides highlight the success of oligonucleotides as therapeutics. Aptamers are excellent affinity reagents that can selectively label protein biomarkers, but their clinical application has lagged. When formulating a given aptamer for in vivo use, molecular design details can determine biostability and biodistribution; therefore, extensive postselection manipulation is often required for each new design to identify clinically useful reagents harboring improved pharmacokinetic properties. Few methods are available to comprehensively screen such aptamers, especially in vivo, constituting a significant bottleneck in the field. In this study, we introduce barcoded aptamer technology (BApT) for multiplexed screening of predefined aptamer formulations in vitro and in vivo. We demonstrate this technology by simultaneously investigating 20 aptamer formulations, each harboring different molecular designs, for targeting Non-Small Cell Lung Cancer cells and tumors. Screening in vitro identified a 45 kDa bispecific formulation as the best cancer cell targeting reagent, whereas screening in vivo identified a 30 kDa monomeric formulation as the best tumor-specific targeting reagent. The multiplexed analysis pipeline also identified biodistribution phenotypes shared among formulations with similar molecular architectures. The BApT approach we describe here has the potential for broad application to fields where oligonucleotide-based targeting reagents are desired.


Subject(s)
Aptamers, Nucleotide , Aptamers, Nucleotide/chemistry , Aptamers, Nucleotide/genetics , Humans , Animals , Mice , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/pathology , Carcinoma, Non-Small-Cell Lung/drug therapy , Cell Line, Tumor , Oligonucleotides/chemistry , Oligonucleotides/pharmacokinetics , Oligonucleotides/genetics , Lung Neoplasms/genetics , Lung Neoplasms/pathology , SELEX Aptamer Technique/methods , Xenograft Model Antitumor Assays
3.
Infect Dis Model ; 9(3): 673-679, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38638339

ABSTRACT

During the COVID-19 pandemic, over one thousand papers were published on "Susceptible-Exposed-Infectious-Removed" (SEIR) epidemic computational models. The English word "exposed" in its vernacular and public health usage means a state of having been in contact with an infectious individual, but not necessarily infected. In contrast, the term "exposed" in SEIR modeling usage typically stands for a state of already being infected but not yet being infectious to others, a state more properly termed "latently infected." In public health language, "exposed" means possibly infected, yet in SEIR modeling language, "exposed" means already infected. This paper retraces the conceptual and mathematical origins of this terminological disconnect and concludes that epidemic modelers should consider using the "SLIR" notational short-hand (L for Latent) instead of SEIR.

4.
RNA Biol ; 21(1): 1-12, 2024 01.
Article in English | MEDLINE | ID: mdl-38032240

ABSTRACT

NAD can be inserted co-transcriptionally via non-canonical initiation to form NAD-RNA. However, that mechanism is unlikely for CoA-linked RNAs due to low intracellular concentration of the required initiator nucleotide, 3'-dephospho-CoA (dpCoA). We report here that phosphopantetheine adenylyltransferase (PPAT), an enzyme of CoA biosynthetic pathway, accepts RNA transcripts as its acceptor substrate and transfers 4'-phosphopantetheine to yield CoA-RNA post-transcriptionally. Synthetic natural (RNAI) and small artificial RNAs were used to identify the features of RNA that are needed for it to serve as PPAT substrate. RNAs with 4-10 unpaired nucleotides at the 5' terminus served as PPAT substrates, but RNAs having <4 unpaired nucleotides did not undergo capping. No capping was observed when the +1A was changed to G or when 5' triphosphate was removed by RNA pyrophosphohydrolase (RppH), suggesting the enzyme recognizes pppA-RNA as an ATP analog. PPAT binding affinities were equivalent for transcripts with +1A, +1 G, or 5'OH (+1A), indicating that productive enzymatic recognition is driven more by local positioning effects than by overall binding affinity. Capping rates were independent of the number of unpaired nucleotides in the range of 4-10 nucleotides. Capping was strongly inhibited by ATP, reducing CoA-RNA production ~70% when equimolar ATP and substrate RNA were present. Dual bacterial expression of candidate RNAs with different 5' structures followed by CoA-RNA CaptureSeq revealed 12-fold enrichment of the better PPAT substrate, consistent with in vivo CoA-capping of RNA transcripts by PPAT. These results suggest post-transcriptional RNA capping as a possible mechanism for the biogenesis of CoA-RNAs in bacteria.


Subject(s)
Coenzyme A , NAD , Coenzyme A/metabolism , Nucleotidyltransferases/chemistry , Adenosine Triphosphate
5.
Mol Ther Nucleic Acids ; 34: 102046, 2023 Dec 12.
Article in English | MEDLINE | ID: mdl-37869258

ABSTRACT

A significant fraction of non-small cell lung cancer (NSCLC) cases are due to oncogenic mutations in the tyrosine kinase domain of the epidermal growth factor receptor (EGFR). Anti-EGFR antibodies have shown limited clinical benefit for NSCLC, whereas tyrosine kinase inhibitors (TKIs) are effective, but resistance ultimately occurs. The current landscape suggests that alternative ligands that target wild-type and mutant EGFRs are desirable for targeted therapy or drug delivery development. Here we evaluate NSCLC targeting using an anti-EGFR aptamer (MinE07). We demonstrate that interaction sites of MinE07 overlap with clinically relevant antibodies targeting extracellular domain III and that MinE07 retains binding to EGFR harboring the most common oncogenic and resistance mutations. When MinE07 was linked to an anti-c-Met aptamer, the EGFR/c-Met bispecific aptamer (bsApt) showed superior labeling of NSCLC cells in vitro relative to monospecific aptamers. However, dual targeting in vivo did not improve the recognition of NSCLC xenografts compared to MinE07. Interestingly, biodistribution of Cy7-labeled bsApt differed significantly from Alexa Fluor 750-labeled bsApt. Overall, our findings demonstrate that aptamer formulations containing MinE07 can target ectopic lung cancer without additional stabilization or PEGylation and highlights the potential of MinE07 as a targeting reagent for the recognition of NSCLC harboring clinically relevant EGFRs.

6.
RNA ; 29(8): 1301-1315, 2023 08.
Article in English | MEDLINE | ID: mdl-37192815

ABSTRACT

Systematic evolution of ligands through exponential enrichment (SELEX) is widely used to identify functional nucleic acids, such as aptamers and ribozymes. Ideally, selective pressure drives the enrichment of sequences that display the function of interest (binding, catalysis, etc.). However, amplification biases from reverse transcription can overwhelm this enrichment and leave some functional sequences at a disadvantage, with cumulative effects across multiple rounds of selection. Libraries that are designed to include structural scaffolds can improve selection outcomes by sampling sequence space more strategically, but they are also susceptible to such amplification biases, particularly during reverse transcription. Therefore, we tested five reverse transcriptases (RTs)-ImProm-II, Marathon RT (MaRT), TGIRT-III, SuperScript IV (SSIV), and BST 3.0 DNA polymerase (BST)-to determine which enzymes introduced the least bias. We directly compared cDNA yield and processivity for these enzymes on RNA templates with varying degrees of structure under various reaction conditions. In these analyses, BST exhibited excellent processivity, generated large quantities of the full-length cDNA product, displayed little bias among templates with varying structure and sequence, and performed well on long, highly structured viral RNAs. Additionally, six RNA libraries containing either strong, moderate, or no incorporated structural elements were pooled and competed head-to-head in six rounds of an amplification-only selection without external selective pressure using either SSIV, ImProm-II, or BST during reverse transcription. High-throughput sequencing established that BST maintained the most neutral enrichment values, indicating low interlibrary bias over the course of six rounds, relative to SSIV and ImProm-II, and it introduced minimal mutational bias.


Subject(s)
Aptamers, Nucleotide , Reverse Transcription , DNA, Complementary , RNA-Directed DNA Polymerase/genetics , RNA-Directed DNA Polymerase/metabolism , Gene Library , RNA, Viral , Aptamers, Nucleotide/chemistry , SELEX Aptamer Technique
7.
J Control Release ; 355: 228-237, 2023 03.
Article in English | MEDLINE | ID: mdl-36642253

ABSTRACT

Nanoparticles (NPs) are commonly functionalized using targeting ligands to drive their selective uptake in cells of interest. Typical target cell types are cancer cells, which often overexpress distinct surface receptors that can be exploited for NP therapeutics. However, these targeted receptors are also moderately expressed in healthy cells, leading to unwanted off-tumor toxicities. Multivalent interactions between NP ligands and cell receptors have been investigated to increase the targeting selectivity towards cancer cells due to their non-linear response to receptor density. However, to exploit the multivalent effect, multiple variables have to be considered such as NP valency, ligand affinity, and cell receptor density. Here, we synthesize a panel of aptamer-functionalized silica-supported lipid bilayers (SSLB) to study the effect of valency, aptamer affinity, and epidermal growth factor receptor (EGFR) density on targeting specificity and selectivity. We show that there is an evident interplay among those parameters that can be tuned to increase SSLB selectivity towards high-density EGFR cells and reduce accumulation at non-tumor tissues. Specifically, the combination of high-affinity aptamers and low valency SSLBs leads to increased high-EGFR cell selectivity. These insights provide a better understanding of the multivalent interactions of NPs with cells and bring the nanomedicine field a step closer to the rational design of cancer nanotherapeutics.


Subject(s)
Nanoparticles , Neoplasms , Humans , ErbB Receptors , Neoplasms/drug therapy , Cell Line, Tumor
8.
bioRxiv ; 2023 Dec 12.
Article in English | MEDLINE | ID: mdl-38168417

ABSTRACT

The HIV-1 capsid protein (CA) assumes distinct assembly forms during replication, each presenting unique, solvent-accessible surfaces that facilitate multifaceted functions and host factor interactions. However, contributions of individual CA assemblies remain unclear, as the evaluation of CA in cells presents several technical challenges. To address this need, we sought to identify CA assembly form-specific aptamers. Aptamer subsets with different specificities emerged from within a highly converged, pre-enriched aptamer library previously selected to bind the CA hexamer lattice. Subsets were either highly specific for CA lattice or bound both CA lattice and CA hexamer. We further evaluated four representatives to reveal aptamer structural features required for binding, highlighting interesting features and challenges in aptamer structure determination. Importantly, our aptamers bind biologically relevant forms of CA and we demonstrate aptamer-mediated affinity purification of CA from cell lysates without virus or host modification. Thus, we have identified CA assembly form-specific aptamers that represent exciting new tools for the study of CA.

9.
Nat Chem Biol ; 18(11): 1263-1269, 2022 11.
Article in English | MEDLINE | ID: mdl-36097297

ABSTRACT

The discovery of ribozymes has inspired exploration of RNA's potential to serve as primordial catalysts in a hypothesized RNA world. Modern oxidoreductase enzymes employ differential binding between reduced and oxidized forms of redox cofactors to alter cofactor reduction potential and enhance the enzyme's catalytic capabilities. The utility of differential affinity has been underexplored as a chemical strategy for RNA. Here we show an RNA aptamer that preferentially binds oxidized forms of flavin over reduced forms and markedly shifts flavin reduction potential by -40 mV, similar to shifts for oxidoreductases. Nuclear magnetic resonance structural analysis revealed π-π and donor atom-π interactions between the aptamer and flavin that cause unfavorable contacts with the electron-rich reduced form, suggesting a mechanism by which the local environment of the RNA-binding pocket drives the observed shift in cofactor reduction potential. It seems likely that primordial RNAs could have used similar strategies in RNA world metabolisms.


Subject(s)
Aptamers, Nucleotide , RNA, Catalytic , Aptamers, Nucleotide/metabolism , RNA, Catalytic/metabolism , Oxidation-Reduction , Flavins/chemistry , Oxidoreductases/metabolism , RNA/metabolism
10.
Mol Ther Nucleic Acids ; 29: 862-870, 2022 Sep 13.
Article in English | MEDLINE | ID: mdl-36159593

ABSTRACT

Combinatorial selections are powerful strategies for identifying biopolymers with specific biological, biomedical, or chemical characteristics. Unfortunately, most available software tools for high-throughput sequencing analysis have high entrance barriers for many users because they require extensive programming expertise. FASTAptameR 2.0 is an R-based reimplementation of FASTAptamer designed to minimize this barrier while maintaining the ability to answer complex sequence-level and population-level questions. This open-source toolkit features a user-friendly web tool, interactive graphics, up to 100 times faster clustering, an expanded module set, and an extensive user guide. FASTAptameR 2.0 accepts diverse input polymer types and can be applied to any sequence-encoded selection.

11.
Biosensors (Basel) ; 12(7)2022 Jul 20.
Article in English | MEDLINE | ID: mdl-35884341

ABSTRACT

Developing rapid, sensitive detection methods for 3,4-Methylenedioxymethylamphetamine (MDMA) is crucial to reduce its current misuse in the world population. With that aim, we developed an aptamer-modified tin nanoparticle (SnNP)-based nanoarchitecture as an electrochemical sensor in this study. This platform exhibited a high electron transfer rate with enhanced conductivity arising from its large surface area in comparison to the bare electrode. This observation was explained by the 40-fold higher electroactive surface area of SnNPs@Au, which provided a large space for 1.0 µM AptMDMA (0.68 ± 0.36 × 1012 molecule/cm2) immobilization and yielded a significant electrochemical response in the presence of MDMA. Furthermore, the AptMDMA-modified SnNPs@Au sensing platform proved to be a simple yet ultrasensitive analytical device for MDMA detection in spiked biological and water samples. This novel electrochemical aptasensor showed good linearity in the range of 0.01-1.0 nM for MDMA (R2 = 0.97) with a limit of detection of 0.33 nM and a sensitivity of 0.54 ohm/nM. In addition, the device showed high accuracy and stability along with signal recoveries in the range of 92-96.7% (Relative Standard Deviation, RSD, 1.1-2.18%). In conclusion, the proposed aptasensor developed here is the first to combine SnNPs and aptamers for illicit compound detection, and it offers a reliable platform for recreational drug detection.


Subject(s)
Aptamers, Nucleotide , Biosensing Techniques , Metal Nanoparticles , N-Methyl-3,4-methylenedioxyamphetamine , Nanostructures , Aptamers, Nucleotide/chemistry , Biosensing Techniques/methods , Electrochemical Techniques/methods , Gold/chemistry , Limit of Detection , Metal Nanoparticles/chemistry
12.
Nucleic Acid Ther ; 32(4): 235-250, 2022 08.
Article in English | MEDLINE | ID: mdl-35452303

ABSTRACT

Neurodegeneration is a progressive deterioration of neural structures leading to cognitive or motor impairment of the affected patient. There is still no effective therapy for any of the most common neurodegenerative diseases (NDs) such as Alzheimer's or Parkinson's disease. Although NDs exhibit distinct clinical characteristics, many are characterized by the accumulation of misfolded proteins or peptide fragments in the brain and/or spinal cord. The presence of similar inclusion bodies in patients with diverse NDs provides a rationale for developing therapies directed at overlapping disease mechanisms. A novel targeting strategy involves the use of aptamers for therapeutic development. Aptamers are short nucleic acid ligands able to recognize molecular targets with high specificity and high affinity. Despite the fact that several academic groups have shown that aptamers have the potential to be used in therapeutic and diagnostic applications, their clinical translation is still limited. In this study, we describe aptamers that have been developed against proteins relevant to NDs, including prion protein and amyloid beta (Aß), cell surface receptors and other cytoplasmic proteins. This review also describes advances in the application of these aptamers in imaging, protein detection, and protein quantification, and it provides insights about their accelerated clinical use for disease diagnosis and therapy.


Subject(s)
Aptamers, Nucleotide , Prions , Amyloid beta-Peptides/genetics , Aptamers, Nucleotide/chemistry , Aptamers, Nucleotide/genetics , Aptamers, Nucleotide/therapeutic use , Humans , Ligands , Peptide Fragments
14.
Int J Drug Policy ; 104: 103674, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35410844
15.
J Infect Dis ; 226(5): 766-777, 2022 09 13.
Article in English | MEDLINE | ID: mdl-35267024

ABSTRACT

BACKGROUND: Excessive complement activation has been implicated in the pathogenesis of coronavirus disease 2019 (COVID-19), but the mechanisms leading to this response remain unclear. METHODS: We measured plasma levels of key complement markers, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA and antibodies against SARS-CoV-2 and seasonal human common cold coronaviruses (CCCs) in hospitalized patients with COVID-19 of moderate (n = 18) and critical severity (n = 37) and in healthy controls (n = 10). RESULTS: We confirmed that complement activation is systemically increased in patients with COVID-19 and is associated with a worse disease outcome. We showed that plasma levels of C1q and circulating immune complexes were markedly increased in patients with severe COVID-19 and correlated with higher immunoglobulin (Ig) G titers, greater complement activation, and higher disease severity score. Additional analyses showed that the classical pathway was the main arm responsible for augmented complement activation in severe patients. In addition, we demonstrated that a rapid IgG response to SARS-CoV-2 and an anamnestic IgG response to the nucleoprotein of the CCCs were strongly correlated with circulating immune complex levels, complement activation, and disease severity. CONCLUSIONS: These findings indicate that early, nonneutralizing IgG responses may play a key role in complement overactivation in severe COVID-19. Our work underscores the urgent need to develop therapeutic strategies to modify complement overactivation in patients with COVID-19.


Subject(s)
COVID-19 , Antibodies, Viral , Coronavirus Nucleocapsid Proteins , Humans , Immunoglobulin G , SARS-CoV-2
16.
Mol Ther Nucleic Acids ; 27: 894-915, 2022 Mar 08.
Article in English | MEDLINE | ID: mdl-35141049

ABSTRACT

Evasion of immune destruction is a major hallmark of cancer. Recent US Food and Drug Administration (FDA) approvals of various immunomodulating therapies underline the important role that reprogramming the immune system can play in combating this disease. However, a wide range of side effects still limit the therapeutic potential of immunomodulators, suggesting a need for more precise reagents with negligible off-target and on-target/off-tumor effects. Aptamers are single-chained oligonucleotides that bind their targets with high specificity and affinity owing to their three-dimensional (3D) structures, and they are one potential way to address this need. In particular, bispecific aptamers (bsApts) have been shown to induce artificial immune synapses that promote T cell activation and subsequent tumor cell lysis in various in vitro and in vivo pre-clinical models. We discuss these advances here, along with gaps in bsApt biology at both the cellular and resident tissue levels that should be addressed to accelerate their translation into the clinic. The broad application, minimal production cost, and relative lack of immunogenicity of bsApts give them some ideal qualities for manipulating the immune system. Building upon lessons from other novel therapies, bsApts could soon provide clinicians with an immunomodulating toolbox that is not only potent and efficacious but exercises a wide therapeutic index.

17.
Open Forum Infect Dis ; 9(1): ofab607, 2022 Jan.
Article in English | MEDLINE | ID: mdl-35024374

ABSTRACT

BACKGROUND: Influenza activity in the 2020-2021 season was remarkably low, likely due to implementation of public health preventive measures such as social distancing, mask wearing, and school closure. With waning immunity, the impact of low influenza activity in the 2020-2021 season on the following season is unknown. METHODS: We built a multistrain compartmental model that captures immunity over multiple influenza seasons in the United States. Compared with the counterfactual case, where influenza activity remained at the normal level in 2020-2021, we estimated the change in the number of hospitalizations when the transmission rate was decreased by 20% in 2020-2021. We varied the level of vaccine uptake and effectiveness in 2021-2022. We measured the change in population immunity over time by varying the number of seasons with lowered influenza activity. RESULTS: With the lowered influenza activity in 2020-2021, the model estimated 102 000 (95% CI, 57 000-152 000) additional hospitalizations in 2021-2022, without changes in vaccine uptake and effectiveness. The estimated changes in hospitalizations varied depending on the level of vaccine uptake and effectiveness in the following year. Achieving a 50% increase in vaccine coverage was necessary to avert the expected increase in hospitalization in the next influenza season. If the low influenza activity were to continue over several seasons, population immunity would remain low during those seasons, with 48% of the population susceptible to influenza infection. CONCLUSIONS: Our study projected a large compensatory influenza season in 2021-2022 due to a light season in 2020-2021. However, higher influenza vaccine uptake would reduce this projected increase in influenza.

18.
Nucleic Acids Res ; 50(3): 1701-1717, 2022 02 22.
Article in English | MEDLINE | ID: mdl-35018437

ABSTRACT

The HIV-1 capsid core participates in several replication processes. The mature capsid core is a lattice composed of capsid (CA) monomers thought to assemble first into CA dimers, then into ∼250 CA hexamers and 12 CA pentamers. CA assembly requires conformational flexibility of each unit, resulting in the presence of unique, solvent-accessible surfaces. Significant advances have improved our understanding of the roles of the capsid core in replication; however, the contributions of individual CA assembly forms remain unclear and there are limited tools available to evaluate these forms in vivo. Here, we have selected aptamers that bind CA lattice tubes. We describe aptamer CA15-2, which selectively binds CA lattice, but not CA monomer or CA hexamer, suggesting that it targets an interface present and accessible only on CA lattice. CA15-2 does not compete with PF74 for binding, indicating that it likely binds a non-overlapping site. Furthermore, CA15-2 inhibits HIV-1 replication when expressed in virus producer cells, but not target cells, suggesting that it binds a biologically-relevant site during virus production that is either not accessible during post-entry replication steps or is accessible but unaltered by aptamer binding. Importantly, CA15-2 represents the first aptamer that specifically recognizes the HIV-1 CA lattice.


Subject(s)
Aptamers, Nucleotide , HIV-1 , Aptamers, Nucleotide/metabolism , Capsid/metabolism , Capsid Proteins/genetics , Capsid Proteins/metabolism , HIV-1/metabolism , Virus Replication/genetics
19.
J Virol ; 96(2): e0159921, 2022 01 26.
Article in English | MEDLINE | ID: mdl-34705557

ABSTRACT

Live oral vaccines have been explored for their protective efficacy against respiratory viruses, particularly for adenovirus serotypes 4 and 7. The potential of a live oral vaccine against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), however, remains unclear. In this study, we assessed the immunogenicity of live SARS-CoV-2 delivered to the gastrointestinal tract in rhesus macaques and its protective efficacy against intranasal and intratracheal SARS-CoV-2 challenge. Postpyloric administration of SARS-CoV-2 by esophagogastroduodenoscopy resulted in limited virus replication in the gastrointestinal tract and minimal to no induction of mucosal antibody titers in rectal swabs, nasal swabs, and bronchoalveolar lavage fluid. Low levels of serum neutralizing antibodies were induced and correlated with modestly diminished viral loads in nasal swabs and bronchoalveolar lavage fluid following intranasal and intratracheal SARS-CoV-2 challenge. Overall, our data show that postpyloric inoculation of live SARS-CoV-2 is weakly immunogenic and confers partial protection against respiratory SARS-CoV-2 challenge in rhesus macaques. IMPORTANCE SARS-CoV-2 remains a global threat, despite the rapid deployment but limited coverage of multiple vaccines. Alternative vaccine strategies that have favorable manufacturing timelines, greater ease of distribution, and improved coverage may offer significant public health benefits, especially in resource-limited settings. Live oral vaccines have the potential to address some of these limitations; however, no studies have yet been conducted to assess the immunogenicity and protective efficacy of a live oral vaccine against SARS-CoV-2. Here, we report that oral administration of live SARS-CoV-2 in nonhuman primates may offer prophylactic benefits, but the formulation and route of administration will require further optimization.


Subject(s)
Antibodies, Neutralizing/blood , Antibodies, Viral/blood , COVID-19 Vaccines/administration & dosage , COVID-19/prevention & control , Administration, Oral , Animals , Female , Macaca mulatta , Male , Vaccine Efficacy
20.
Addiction ; 116(6): 1593-1599, 2021 06.
Article in English | MEDLINE | ID: mdl-32935381

ABSTRACT

BACKGROUND AND AIMS: It is widely believed that the 2018 decline in overdose deaths in the United States was attributable to a range of public health interventions, however, this decline also coincided with the regulation and decline in use of potent fentanyl analogs, especially carfentanil. The aim of this study was to investigate the association between overdose deaths and carfentanil availability in the United States. DESIGN: Secondary analysis of drug overdose deaths from the Center for Disease Control and Prevention (CDC) and carfentanil exhibit data from drug seizures submitted to drug crime labs and published by the Drug Enforcement Administration (DEA). Trends in overdose deaths were compared in states with high carfentanil exhibits with states with low or no carfentanil exhibits. SETTING: United States. PARTICIPANTS: A total of 1 035 923 drug overdose death records in the United States from 1979 through 2019 were studied. MEASUREMENTS: The outcomes studied were number of overdose deaths and mortality rates by state. FINDINGS: Drug overdose deaths have been closely tracked along an exponential curve. The years 2016 and 2017 witnessed a hyper-exponential surge with increases in overdose deaths of 11 228 (+21.4%) and 6605 (+10.4%), respectively. Subsequently in 2018, drug overdose deaths declined by -2870 (-4.1%). This rise and then fall coincided with a surge and then decline in carfentanil drug seizure exhibits during these same years: 0 (2015), 1292 (2016), 5857 (2017) and 804 (2018). The majority of carfentanil exhibits were localized to a few states. The 2018 decline in overdose deaths in the top five states with the greatest spike in carfentanil exhibits in 2017 (Ohio, Florida, Pennsylvania, Kentucky and Michigan) was 2848, which accounted for nearly all of the total US decline. CONCLUSIONS: The 2016-2017 acceleration and then 2018 decline in drug overdose deaths in the United States was associated with the sudden rise and then fall of carfentanil availability. Given the regional variation, carfentanil's decreased availability may have contributed to the reduction in overdose deaths in 2018.


Subject(s)
Drug Overdose , Fentanyl/analogs & derivatives , Analgesics, Opioid , Crime , Drug Overdose/mortality , Fentanyl/adverse effects , Humans , United States/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL
...