Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Polymers (Basel) ; 13(21)2021 Nov 04.
Article in English | MEDLINE | ID: mdl-34771365

ABSTRACT

Tuberculosis is one of the dangerous infectious diseases, killing over a million people worldwide each year. The search for new dosage forms for the treatment of drug-resistant tuberculosis is an actual task. Biocompatible polymer nanoparticles, in particular bovine serum albumin (BSA), are promising drug carriers. Nanoparticle (NP) parameters such as diameter, polydispersity, bioactive substance loading, and NP yield are very important when it comes to drug transport through the bloodstream. The most well-known and widely used first-line anti-tuberculosis drug, isoniazid (INH), is being used as a drug. BSA-INH NPs were obtained by an ethanol desolvation of an aqueous protein solution in the drug presence. The peculiarity of the method is that natural components, namely urea and cysteine, are used for the stabilization of BSA-INH NPs after desolvation. The characteristics of the obtained BSA-INH NPs are significantly affected by the concentration of protein, isoniazid, urea, and cysteine in the solution. The aim of the present study is to investigate the concentration effect of the system reacting components on the parameters of the NPs that are obtained. We have chosen the concentrations of four reacting components, i.e., BSA, isoniazid, urea, and cysteine, as controlling factors and applied the Taguchi method to analyze which concentration of each component has an important effect on BSA-INH NPs characteristics.

2.
Scientifica (Cairo) ; 2020: 6148939, 2020.
Article in English | MEDLINE | ID: mdl-32908782

ABSTRACT

Background. The research results of fat-soluble vitamin D 3 (cholecalciferol) encapsulation with ß-cyclodextrin have been presented in this work. The vitamin D 3 inclusion complex with ß-cyclodextrin was obtained under microwave radiation. The surface morphology of obtained clathrate inclusion complexes was described with the help of a scanning electron microscope. The thermographic measurement results on a differential scanning calorimeter have been presented. The activation energy of the ß-cyclodextrin : vitamin D 3 clathrate complex thermal oxidative destruction reaction was calculated. The clathrate thermal destruction kinetic parameters were determined. The inclusion complex spectral properties were characterized by IR-Fourier and 1H and 13C NMR spectroscopy. The existence of ß-cyclodextrin inclusion complex with vitamin D 3 in a 2 : 1 ratio was confirmed by the experimental results. The activation energy of thermal destruction of the inclusion complex of ß-cyclodextrin with vitamin D 3 was calculated using four different methods.

3.
Polymers (Basel) ; 12(6)2020 Jun 06.
Article in English | MEDLINE | ID: mdl-32517219

ABSTRACT

This study describes the preparation of nanoparticles derived from bovine serum albumin (BSA) in comparison with the formation of nanoparticles composed of human serum albumin (HSA), when the same preparation procedure was used in both cases. To obtain protein nanoparticles, the method of desolvation with ethanol was employed, followed by the stabilization with urea and cysteine. It was shown that, upon transition from HSA to BSA, the particles with smaller sizes and with a narrower polydispersity were formed. The possibility of the immobilization of the antitumor drug hydroxyurea in such protein nanoparticles by adsorption and inclusion methods has been shown. The drug release profile from the polymer matrix was established.

SELECTION OF CITATIONS
SEARCH DETAIL
...