Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 36
Filter
1.
Article in English | MEDLINE | ID: mdl-38907582

ABSTRACT

STUDY DESIGN: Retrospective review of a prospective cohort study. OBJECTIVE: To identify the association between Oswestry Disability Index (ODI) subsections and overall improvement 2 years after lumbar surgery for degenerative lumbar spondylolisthesis (DLS). BACKGROUND: DLS often necessitates lumbar surgery. The ODI is a trusted measure for patient-reported outcomes (PROMs) in assessing spinal disorder outcomes. Surgeons utilize the ODI for baseline functional assessment and post-surgery progress tracking. However, it remains uncertain if and how each subsection influences overall ODI improvement. METHODS: This retrospective cohort study analyzed patients who underwent lumbar surgery for DLS between 2016 and 2018. Preoperative and 2-year postoperative ODI assessments were conducted. The study analyzed postoperative subsection scores and defined ODI improvement as ODIpreop-ODIpostop >0. Univariate linear regression was applied, and receiver operating characteristic (ROC) analysis determined cut-offs for subsection changes and postoperative target values to achieve overall ODI improvement. RESULTS: 265 patients (60% female, mean age 67±8 y) with a baseline ODI of 50±6 and a postoperative ODI of 20±7 were included. ODI improvement was noted in 91% (242 patients). Achieving a postoperative target score of ≤2 in subsections correlated with overall ODI improvement. Walking had the highest predictive value for overall ODI improvement (AUC 0.91, sensitivity 79%, specificity 91%). Pain intensity (AUC 0.90, sensitivity 86%, specificity 83%) and changing degree of pain (AUC 0.87, sensitivity 86%, specificity 74%) were also highly predictive. Sleeping had the lowest predictability (AUC 0.79, sensitivity 84%, specificity 65%). Except for sleeping, all subsections had a Youden-index >50%. CONCLUSION: These findings demonstrate how the different ODI subsections associate with overall improvement post-lumbar surgery for DLS. This understanding is crucial for refining preoperative education, addressing particular disabilities, and evaluating surgical efficacy. Additionally, it shows that surgical treatment does not affect all subsections equally.

2.
Eur Spine J ; 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38937347

ABSTRACT

PURPOSE: The literature is scarce in exploring the role of imaging parameters like ultrasound (US) as a biomarker for surgical outcomes. The purpose of this study is to investigate the associations between skin US parameters and revision surgery following spine lumbar fusion. METHODS: Posterior lumbar fusion patients with 2-years follow-up were assessed. Previous fusion or revision not due to adjacent segment disease (ASD) were excluded. Revisions were classified as cases and non-revision were classified as controls. US measurements conducted at two standardized locations on the lumbar back. Skin echogenicity of the average dermal (AD), upper 1/3 of the dermal (UD), lower 1/3 of the dermal (LD), and subcutaneous layer were measured. Echogenicity was calculated with the embedded echogenicity function of our institution's imaging platform (PACS). Statistical significance was set at p < 0.05. RESULTS: A total of 128 patients (51% female, age 62 [54-72] years) were included in the final analysis. 17 patients required revision surgery. AD, UD, and LD echogenicity showed significantly higher results among revision cases 124.5 [IQR = 115.75,131.63], 128.5 [IQR = 125,131.63] and 125.5 [IQR = 107.91,136.50] compared to the control group 114.3 [IQR = 98.83,124.8], 118.5 [IQR = 109.28,127.50], 114 [IQR = 94.20,126.75] respectively. CONCLUSION: The findings of this study demonstrate a significant association between higher echogenicity values in different layers of the dermis and requiring revision surgery. The results provide insights into the potential use of skin US parameters as predictors for revision surgery. These findings may reflect underlying alterations in collagen. Further research is warranted to elucidate the mechanisms driving these associations.

3.
Article in English | MEDLINE | ID: mdl-38770561

ABSTRACT

STUDY DESIGN: Retrospective review of cohort studies. OBJECTIVE: To clarify the necessary ODI improvement for patient satisfaction two years after lumbar surgery. BACKGROUND: Evaluating elective lumbar surgery care often involves patient-reported outcomes (PRO). While postoperative functional improvement measured by ODI is theoretically linked to satisfaction, conflicting evidence exists regarding this association. METHODS: Baseline ODI and 2-year postoperative ODI were assessed. Patient satisfaction, measured on a scale from 1 to 5, with scores ≥4 considered satisfactory, was evaluated. Patients with incomplete follow-up were excluded. Statistical analyses included Mann-Whitney-U and multivariable logistic regression adjusted for age, sex, and BMI. Receiver operating characteristic (ROC) analysis determined threshold values for ODI improvement and postoperative target ODI indicative of patient satisfaction. RESULTS: 383 patients were included (mean age 65±10 y, 57% female). ODI improvement was observed in 91% of patients, with 77% reporting satisfaction scores ≥4. Baseline ODI (median 62, IQR 46-74) improved to a median of 10 (IQR 1-10) 2 years postoperatively. Baseline (OR 0.98, P=0.015) and postoperative ODI scores (OR 0.93, P<0.001), as well as the difference between them (OR 1.04, P< 0.001), were significantly associated with patient satisfaction. Improvement of ≥38 ODI points or a relative change of ≥66% was indicative for patient satisfaction, with higher sensitivity (80%) and specificity (82%) for the relative change versus the absolute change (69%, 68%). With a sensitivity of 85% and a specificity of 77%, a postoperative target ODI of ≤24 indicated patient satisfaction. CONCLUSION: Lower baseline ODI and greater improvements in postoperative ODI are associated with an increased likelihood of patient satisfaction. A relative improvement of ≥66% or achieving a postoperative ODI score of ≤24 were the most indicative thresholds for predicting patient satisfaction, proving more sensitivity and specificity than an absolute change of ≥38 points.

4.
Spine J ; 24(8): 1396-1406, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38570036

ABSTRACT

BACKGROUND/CONTEXT: Degenerative lumbar spondylolisthesis (DLS) is a prevalent spinal condition that can result in significant disability. DLS is thought to result from a combination of disc and facet joint degeneration, as well as various biological, biomechanical, and behavioral factors. One hypothesis is the progressive degeneration of segmental stabilizers, notably the paraspinal muscles, contributes to a vicious cycle of increasing slippage. PURPOSE: To examine the correlation between paraspinal muscle status on MRI and severity of slippage in patients with symptomatic DLS. STUDY DESIGN/SETTING: Retrospective cross-sectional study at an academic tertiary care center. PATIENT SAMPLE: Patients who underwent surgery for DLS at the L4/5 level between 2016-2018 were included. Those with multilevel DLS or insufficient imaging were excluded. OUTCOME MEASURES: The percentage of relative slippage (RS) at the L4/5 level evaluated on standing lateral radiographs. Muscle morphology measurements including functional cross-sectional area (fCSA), body height normalized functional cross-sectional area (HI) of Psoas, erector spinae (ES) and multifidus muscle (MF) and fatty infiltration (FI) of ES and MF were measured on axial MR. Disc degeneration and facet joint arthritis were classified according to Pfirrmann and Weishaupt, respectively. METHODS: Descriptive and comparative statistics, univariable and multivariable linear regression models were utilized to examine the associations between RS and muscle parameters, adjusting for confounders sex, age, BMI, segmental degeneration, and back pain severity and symptom duration. RESULTS: The study analyzed 138 out of 183 patients screened for eligibility. The median age of all patients was 69.5 years (IQR 62 to 73), average BMI was 29.1 (SD±5.1) and average preoperative ODI was 46.4 (SD±16.3). Patients with Meyerding-Grade 2 (M2, N=25) exhibited higher Pfirrmann scores, lower MFfCSA and MFHI, and lower BMI, but significantly more fatty infiltration in the MF and ES muscles compared to those with Meyerding Grade 1 (M1). Univariable linear regression showed that each cm2 decrease in MFfCSA was associated with a 0.9%-point increase in RS (95% CI -1.4 to - 0.4, p<.001), and each cm2/m2 decrease in MFHI was associated with an increase in slippage by 2.2%-points (95% CI -3.7 to -0.7, p=.004). Each 1%-point rise in ESFI and MFFI corresponded to 0.17%- (95% CI 0.05-0.3, p=.01) and 0.20%-point (95% CI 0.1-0.3 p<.001) increases in relative slippage, respectively. Notably, after adjusting for confounders, each cm2 increase in PsoasfCSA and cm2/m2 in PsoasHI was associated with an increase in relative slippage by 0.3% (95% CI 0.1-0.6, p=.004) and 1.1%-points (95% CI 0.4-1.7, p=.001). While MFfCSA tended to be negatively associated with slippage, this did not reach statistical significance (p=.105). However, each 1%-point increase in MFFI and ESFI corresponded to increases of 0.15% points (95% CI 0.05-0.24, p=.002) and 0.14% points (95% CI 0.01-0.27, p=.03) in relative slippage, respectively. CONCLUSION: This study found a significant association between paraspinal muscle status and severity of slippage in DLS. Whereas higher degeneration of the ES and MF correlate with a higher degree of slippage, the opposite was found for the psoas. These findings suggest that progressive muscular imbalance between posterior and anterior paraspinal muscles could contribute to the progression of slippage in DLS.


Subject(s)
Lumbar Vertebrae , Muscular Atrophy , Paraspinal Muscles , Spondylolisthesis , Humans , Spondylolisthesis/diagnostic imaging , Spondylolisthesis/pathology , Spondylolisthesis/surgery , Spondylolisthesis/complications , Male , Paraspinal Muscles/diagnostic imaging , Paraspinal Muscles/pathology , Female , Middle Aged , Lumbar Vertebrae/diagnostic imaging , Lumbar Vertebrae/pathology , Aged , Cross-Sectional Studies , Retrospective Studies , Muscular Atrophy/diagnostic imaging , Muscular Atrophy/pathology , Muscular Atrophy/etiology , Magnetic Resonance Imaging
5.
Article in English | MEDLINE | ID: mdl-38605673

ABSTRACT

STUDY DESIGN: Retrospective study. OBJECTIVE: The aim of this study was to evaluate the association between severity and level of cervical central stenosis (CCS) and the fat infiltration (FI) of the cervical multifidus/rotatores (MR) at each subaxial levels. SUMMARY OF BACKGROUND DATA: The relationship between cervical musculature morphology and the severity of CCS is poorly understood. METHODS: Patients with preoperative cervical magnetic resonance imaging (MRI) who underwent anterior cervical discectomy and fusion (ACDF) were reviewed. The cervical MR were segmented from C3 to C7 and the percent FI was measured using a custom-written Matlab software. The severity of the CCS at each subaxial level was assessed using a previously published classification. Grade 3, representing a loss of cerebrospinal fluid space and deformation of the spinal cord > 25%, was set as the reference and compared to the other gradings. Multivariable linear regression analyses were conducted and adjusted for age, sex, and body mass index. RESULTS: 156 consecutive patients were recruited. A spinal cord compression at a certain level was significantly associated with a greater FI of the MR below that level. After adjustment for the above-mentioned confounders, our results showed that spinal cord compression at C3/4 and C4/5 was significantly associated with greater FI of the MR from C3 to C6 and C5 to C7, respectively. A spinal cord compression at C5/6 or C6/7 was significantly associated with greater FI of the MR at C7. CONCLUSION: Our results demonstrated significant correlations between the severity of CCS and a greater FI of the MR. Moreover, significant level-specific correlations were found. A significant increase in FI of the MR at the levels below the stenosis was observed in patients presenting with spinal cord compression. Given the segmental innervation of the MR, the increased FI might be attributed to neurogenic atrophy. LEVEL OF EVIDENCE: 3.

6.
Pain ; 2024 Mar 22.
Article in English | MEDLINE | ID: mdl-38635483

ABSTRACT

ABSTRACT: Lumbar medial branch radiofrequency neurotomy (RFN), a common treatment for chronic low back pain due to facet joint osteoarthritis (FJOA), may amplify paraspinal muscle atrophy due to denervation. This study aimed to investigate the asymmetry of paraspinal muscle morphology change in patients undergoing unilateral lumbar medial branch RFN. Data from patients who underwent RFN between March 2016 and October 2021 were retrospectively analyzed. Lumbar foramina stenosis (LFS), FJOA, and fatty infiltration (FI) functional cross-sectional area (fCSA) of the paraspinal muscles were assessed on preinterventional and minimum 2-year postinterventional MRI. Wilcoxon signed-rank tests compared measurements between sides. A total of 51 levels of 24 patients were included in the analysis, with 102 sides compared. Baseline MRI measurements did not differ significantly between the RFN side and the contralateral side. The RFN side had a higher increase in multifidus FI (+4.2% [0.3-7.8] vs +2.0% [-2.2 to 6.2], P = 0.005) and a higher decrease in multifidus fCSA (-60.9 mm2 [-116.0 to 10.8] vs -19.6 mm2 [-80.3 to 44.8], P = 0.003) compared with the contralateral side. The change in erector spinae FI and fCSA did not differ between sides. The RFN side had a higher increase in multifidus muscle atrophy compared with the contralateral side. The absence of significant preinterventional degenerative asymmetry and the specificity of the effect to the multifidus muscle suggest a link to RFN. These findings highlight the importance of considering the long-term effects of lumbar medial branch RFN on paraspinal muscle health.

7.
J Neurosurg Case Lessons ; 7(17)2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38648675

ABSTRACT

BACKGROUND: Radicular pain after lumbar decompression surgery can result from epidural hematoma/seroma, recurrent disc herniation, incomplete decompression, or other rare complications. A less recognized complication is postoperative nerve root herniation, resulting from an initially unrecognized intraoperative or, more commonly, a spontaneous postoperative durotomy. Rarely, this nerve root herniation can become entrapped within local structures, including the facet joint. The aim of this study was to illustrate our experience with three cases of lumbosacral nerve root eventration into an adjacent facet joint and to describe our diagnostic and surgical approach to this rare complication. OBSERVATIONS: Three patients who had undergone lumbar decompression surgery with or without fusion experienced postoperative radiculopathy. Exploratory revision surgery revealed all three had a durotomy with nerve root eventration into the facet joint. Significant symptom improvement was achieved in all patients following liberation of the neural elements from the facet joints. LESSONS: Entrapment of herniated nerve roots into the facet joint may be a previously underappreciated complication and remains quite challenging to diagnose even with the highest-quality advanced imaging. Thus, clinicians must have a high index of suspicion to diagnose this issue and a low threshold for surgical exploration.

8.
Spine J ; 24(7): 1211-1221, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38432297

ABSTRACT

BACKGROUND CONTEXT: Atrophy of the paraspinal musculature (PM) as well as generalized sarcopenia are increasingly reported as important parameters for clinical outcomes in the field of spine surgery. Despite growing awareness and potential similarities between both conditions, the relationship between "generalized" and "spine-specific" sarcopenia is unclear. PURPOSE: To investigate the association between generalized and spine-specific sarcopenia. STUDY DESIGN: Retrospective cross-sectional study. PATIENT SAMPLE: Patients undergoing lumbar spinal fusion surgery for degenerative spinal pathologies. OUTCOME MEASURES: Generalized sarcopenia was evaluated with the short physical performance battery (SPPB), grip strength, and the psoas index, while spine-specific sarcopenia was evaluated by measuring fatty infiltration (FI) of the PM. METHODS: We used custom software written in MATLAB® to calculate the FI of the PM. The correlation between FI of the PM and assessments of generalized sarcopenia was calculated using Spearman's rank correlation coefficient (rho). The strength of the correlation was evaluated according to established cut-offs: negligible: 0-0.3, low: 0.3-0.5, moderate: 0.5-0.7, high: 0.7-0.9, and very high≥0.9. In a Receiver Operating Characteristics (ROC) analysis, the Area Under the Curve (AUC) of sarcopenia assessments to predict severe multifidus atrophy (FI≥50%) was calculated. In a secondary analysis, factors associated with severe multifidus atrophy in nonsarcopenic patients were analyzed. RESULTS: A total of 125 (43% female) patients, with a median age of 63 (IQR 55-73) were included. The most common surgical indication was lumbar spinal stenosis (79.5%). The median FI of the multifidus was 45.5% (IQR 35.6-55.2). Grip strength demonstrated the highest correlation with FI of the multifidus and erector spinae (rho=-0.43 and -0.32, p<.001); the other correlations were significant (p<.05) but lower in strength. In the AUC analysis, the AUC was 0.61 for the SPPB, 0.71 for grip strength, and 0.72 for the psoas index. The latter two were worse in female patients, with an AUC of 0.48 and 0.49. Facet joint arthropathy (OR: 1.26, 95% CI: 1.11-1.47, p=.001) and foraminal stenosis (OR: 1.54, 95% CI: 1.10-2.23, p=.015) were independently associated with severe multifidus atrophy in our secondary analysis. CONCLUSION: Our study demonstrates a low correlation between generalized and spine-specific sarcopenia. These findings highlight the risk of misdiagnosis when relying on screening tools for general sarcopenia and suggest that general and spine-specific sarcopenia may have distinct etiologies.


Subject(s)
Muscular Atrophy , Paraspinal Muscles , Sarcopenia , Humans , Sarcopenia/diagnosis , Female , Male , Middle Aged , Paraspinal Muscles/pathology , Aged , Cross-Sectional Studies , Retrospective Studies , Muscular Atrophy/diagnosis , Muscular Atrophy/etiology , Lumbar Vertebrae/surgery , Lumbar Vertebrae/pathology , Spinal Fusion
9.
Global Spine J ; : 21925682241232328, 2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38324511

ABSTRACT

STUDY DESIGN: Human Cadaveric Study. OBJECTIVE: This study aims to explore the feasibility of using preoperative magnetic resonance imaging (MRI), zero-time-echo (ZTE) and spoiled gradient echo (SPGR), as source data for robotic-assisted spine surgery and assess the accuracy of pedicle screws. METHODS: Zero-time-echo and SPGR MRI scans were conducted on a human cadaver. These images were manually post-processed, producing a computed tomography (CT)-like contrast. The Mazor X robot was used for lumbar pedicle screw-place navigating of MRI. The cadaver underwent a postoperative CT scan to determine the actual position of the navigated screws. RESULTS: Ten lumbar pedicle screws were robotically navigated of MRI (4 ZTE; 6 SPGR). All MR-navigated screws were graded A on the Gertzbein-Robbins scale. Comparing preoperative robotic planning to postoperative CT scan trajectories: The screws showed a median deviation of overall 0.25 mm (0.0; 1.3), in the axial plane 0.27 mm (0.0; 1.3), and in the sagittal plane 0.24 mm (0.0; 0.7). CONCLUSION: This study demonstrates the first successful registration of MRI sequences, ZTE and SPGR, in robotic spine surgery here used for intraoperative navigation of lumbar pedicle screws achieving sufficient accuracy, showcasing potential progress toward radiation-free spine surgery.

10.
Infect Dis Rep ; 15(6): 717-725, 2023 Nov 10.
Article in English | MEDLINE | ID: mdl-37987402

ABSTRACT

This study evaluates potential associations between the perioperative urinary catheter (UC) carriage and (Gram-negative) surgical site infections (SSIs) after spine surgery. It is a retrospective, single-center, case-control study stratifying group comparisons, case-mix adjustments using multivariate logistic regression analyses. Around half of the patients (2734/5485 surgeries) carried a UC for 1 day (median duration) (interquartile range, 1-1 days). Patients with perioperative UC carriage were compared to those without regarding SSI, in general, and Gram-negative, exclusively. The SSI rate was 1.2% (67/5485), yielding 67 revision surgeries. Gram-negative pathogens caused 16 SSIs. Seven Gram-negative episodes revealed the same pathogen concomitantly in the urine and the spine. In the multivariate analysis, the UC carriage duration was associated with SSI (OR 1.1, 95% confidence interval 1.1-1.1), albeit less than classical risk factors like diabetes (OR 2.2, 95%CI 1.1-4.2), smoking (OR 2.4, 95%CI 1.4-4.3), or higher ASA-Scores (OR 2.3, 95%CI 1.4-3.6). In the second multivariate analysis targeting Gram-negative SSIs, the female sex (OR 3.8, 95%CI 1.4-10.6) and a UC carriage > 1 day (OR 5.5, 95%CI 1.5-20.3) were associated with Gram-negative SSIs. Gram-negative SSIs after spine surgery seem associated with perioperative UC carriage, especially in women. Other SSI risk factors are diabetes, smoking, and higher ASA scores.

11.
Eur Spine J ; 32(6): 1876-1886, 2023 06.
Article in English | MEDLINE | ID: mdl-37093262

ABSTRACT

PURPOSE: The aim of this study was to elucidate segmental range of motion (ROM) before and after common decompression and fusion procedures on the lumbar spine. METHODS: ROM of fourteen fresh-frozen human cadaver lumbar segments (L1/2: 4, L3/4: 5, L5/S1: 5) was evaluated in six loading directions: flexion/extension (FE), lateral bending (LB), lateral shear (LS), anterior shear (AS), axial rotation (AR), and axial compression/distraction (AC). ROM was tested with and without posterior instrumentation under the following conditions: 1) native 2) after unilateral laminotomy, 3) after midline decompression, and 4) after nucleotomy. RESULTS: Median native ROM was FE 6.8°, LB 5.6°, and AR 1.7°, AS 1.8 mm, LS 1.4 mm, AC 0.3 mm. Unilateral laminotomy significantly increased ROM by 6% (FE), 3% (LB), 12% (AR), 11% (AS), and 8% (LS). Midline decompression significantly increased these numbers to 15%, 5%, 21%, 20%, and 19%, respectively. Nucleotomy further increased ROM in all directions, most substantially in AC of 153%. Pedicle screw fixation led to ROM decreases of 82% in FE, 72% in LB, 42% in AR, 31% in AS, and 17% in LS. In instrumented segments, decompression only irrelevantly affected ROM. CONCLUSIONS: The amount of posterior decompression significantly impacts ROM of the lumbar spine. The here performed biomechanical study allows creation of a simplified rule of thumb: Increases in segmental ROM of approximately 10%, 20%, and 50% can be expected after unilateral laminotomy, midline decompression, and nucleotomy, respectively. Instrumentation decreases ROM by approximately 80% in bending moments and accompanied decompression procedures only minorly destabilize the instrumentation construct.


Subject(s)
Pedicle Screws , Spinal Fusion , Humans , Laminectomy , Biomechanical Phenomena , Spinal Fusion/methods , Lumbar Vertebrae/surgery , Range of Motion, Articular , Cadaver , Decompression
12.
Eur Spine J ; 32(4): 1401-1410, 2023 04.
Article in English | MEDLINE | ID: mdl-36877366

ABSTRACT

PURPOSE: To compare the residual range of motion (ROM) of cortical screw (CS) versus pedicle screw (PS) instrumented lumbar segments and the additional effect of transforaminal interbody fusion (TLIF) and cross-link (CL) augmentation. METHODS: ROM of thirty-five human cadaver lumbar segments in flexion/extension (FE), lateral bending (LB), lateral shear (LS), anterior shear (AS), axial rotation (AR), and axial compression (AC) was recorded. After instrumenting the segments with PS (n = 17) and CS (n = 18), ROM in relation to the uninstrumented segments was evaluated without and with CL augmentation before and after decompression and TLIF. RESULTS: CS and PS instrumentations both significantly reduced ROM in all loading directions, except AC. In undecompressed segments, a significantly lower relative (and absolute) reduction of motion in LB was found with CS 61% (absolute 3.3°) as compared to PS 71% (4.0°; p = 0.048). FE, AR, AS, LS, and AC values were similar between CS and PS instrumented segments without interbody fusion. After decompression and TLIF insertion, no difference between CS and PS was found in LB and neither in any other loading direction. CL augmentation did not diminish differences in LB between CS and PS in the undecompressed state but led to an additional small AR reduction of 11% (0.15°) in CS and 7% (0.05°) in PS instrumentation. CONCLUSION: Similar residual motion is found with CS and PS instrumentation, except of slightly, but significantly inferior reduction of ROM in LB with CS. Differences between CS and PS in diminish with TLIF but not with CL augmentation.


Subject(s)
Pedicle Screws , Spinal Fusion , Humans , Lumbar Vertebrae/surgery , Biomechanical Phenomena , Range of Motion, Articular , Cadaver , Decompression
13.
JOR Spine ; 6(1): e1237, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36994463

ABSTRACT

Background: Vertebral endplate signal intensity changes visualized by magnetic resonance imaging termed Modic changes (MC) are highly prevalent in low back pain patients. Interconvertibility between the three MC subtypes (MC1, MC2, MC3) suggests different pathological stages. Histologically, granulation tissue, fibrosis, and bone marrow edema are signs of inflammation in MC1 and MC2. However, different inflammatory infiltrates and amount of fatty marrow suggest distinct inflammatory processes in MC2. Aims: The aims of this study were to investigate (i) the degree of bony (BEP) and cartilage endplate (CEP) degeneration in MC2, (ii) to identify inflammatory MC2 pathomechanisms, and (iii) to show that these marrow changes correlate with severity of endplate degeneration. Methods: Pairs of axial biopsies (n = 58) spanning the entire vertebral body including both CEPs were collected from human cadaveric vertebrae with MC2. From one biopsy, the bone marrow directly adjacent to the CEP was analyzed with mass spectrometry. Differentially expressed proteins (DEPs) between MC2 and control were identified and bioinformatic enrichment analysis was performed. The other biopsy was processed for paraffin histology and BEP/CEP degenerations were scored. Endplate scores were correlated with DEPs. Results: Endplates from MC2 were significantly more degenerated. Proteomic analysis revealed an activated complement system, increased expression of extracellular matrix proteins, angiogenic, and neurogenic factors in MC2 marrow. Endplate scores correlated with upregulated complement and neurogenic proteins. Discussion: The inflammatory pathomechanisms in MC2 comprises activation of the complement system. Concurrent inflammation, fibrosis, angiogenesis, and neurogenesis indicate that MC2 is a chronic inflammation. Correlation of endplate damage with complement and neurogenic proteins suggest that complement system activation and neoinnervation may be linked to endplate damage. The endplate-near marrow is the pathomechanistic site, because MC2 occur at locations with more endplate degeneration. Conclusion: MC2 are fibroinflammatory changes with complement system involvement which occur adjacent to damaged endplates.

14.
Oper Orthop Traumatol ; 35(2): 92-99, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36723629

ABSTRACT

OBJECTIVE: Treatment of comminuted clavicle shaft fractures with minimally invasive plate osteosynthesis (MIPO). INDICATIONS: Multifragmentary (≥ 2 intermediate fragments) clavicle shaft fractures with no need for anatomical reduction (AO 15.2B and 15.2C). Even simple fractures (AO 15.2A) with significant soft tissue injuries Tscherne grade I-III are suitable. CONTRAINDICATIONS: Medial or lateral clavicle fractures as well as simple fracture pattern where anatomical reduction is indispensable. SURGICAL TECHNIQUE: Short incision over the medial and lateral end of the main fracture fragments. Either medial or lateral epiperosteal plate insertion. Under image intensifier guidance, the plate is centered either superior or anteroinferior on the clavicle and fixed with a compression wire temporarily (alternatively by a cortical screw) in one of the most lateral holes. Fracture reduction (axis, length, and rotation) over the plate and preliminary fixation medially. After correct reduction has been achieved, further cortical screws and/or locking head screws can be inserted (lag before locking screws). Relative stability is achieved by applying a bridging technique. POSTOPERATIVE MANAGEMENT: No immobilization is needed. Patients are encouraged to perform functional rehabilitation with active and passive physical therapy. Loading is increased according to radiological signs of bony consolidation. RESULTS: In a retrospective evaluation from 2001-2021, 1128 clavicle osteosyntheses were performed, of which 908 (80.5%) were treated with plate osteosynthesis and 220 (19.5%) with titanium elastic nail (TEN). Of the 908 plate osteosyntheses, 43 (4.7%) were performed with the MIPO approach. Finally, 42 patients (35 men and 7 women; mean age of 44 ± 15 years) with 43 clavicle shaft fractures were analyzed. The operation was accomplished in 63 ± 28 min, and average fluoroscopy time was 45 ± 42 s. A collective of 27 patients could be evaluated after a median follow-up of 14 months (range 1-51 months). In all, 26 fractures healed in a timely manner. In 1 patient a pseudarthrosis occurred which was treated with re-osteosynthesis and cancellous bone grafting in an open technique. Another patient revealed a wound complication with need of operative wound revision 6 weeks after the index surgery. Further postoperative course was uneventful in both patients. All were pain-free and able to return to work. After an average of 17 ± 8 months, 18 hardware removals (66.7%) were performed.


Subject(s)
Clavicle , Fractures, Bone , Male , Humans , Female , Adult , Middle Aged , Clavicle/injuries , Clavicle/surgery , Retrospective Studies , Treatment Outcome , Fractures, Bone/surgery , Fracture Fixation, Internal/methods , Bone Plates , Minimally Invasive Surgical Procedures/methods
15.
Eur Spine J ; 32(4): 1411-1420, 2023 04.
Article in English | MEDLINE | ID: mdl-36820922

ABSTRACT

PURPOSE: To elucidate residual motion of cortical screw (CS) and pedicle screw (PS) constructs with unilateral posterior lumbar interbody fusion (ul-PLIF), bilateral PLIF (bl-PLIF), facet-sparing transforaminal lumbar interbody fusion (fs-TLIF), and facet-resecting TLIF (fr-TLIF). METHODS: A total of 35 human cadaver lumbar segments were instrumented with PS (n = 18) and CS (n = 17). Range of motion (ROM) and relative ROM changes were recorded in flexion/extension (FE), lateral bending (LB), axial rotation (AR), lateral shear (LS), anterior shear (AS), and axial compression (AC) in five instrumentational states: without interbody fusion (wo-IF), ul-PLIF, bl-PLIF, fs-TLIF, and fr-TLIF. RESULTS: Whereas FE, LB, AR, and AC noticeably differed between the instrumentational states, AS and LS were less prominently affected. Compared to wo-IF, ul-PLIF caused a significant increase in ROM with PS (FE + 42%, LB + 24%, AR + 34%, and AC + 77%), however, such changes were non-significant with CS. ROM was similar between wo-IF and all other interbody fusion techniques. Insertion of a second PLIF (bl-PLIF) significantly decreased ROM with CS (FE -17%, LB -26%, AR -20%, AC -51%) and PS (FE - 23%, LB - 14%, AR - 20%, AC - 45%,). Facet removal in TLIF significantly increased ROM with CS (FE + 6%, LB + 9%, AR + 17%, AC of + 23%) and PS (FE + 7%, AR + 12%, AC + 13%). CONCLUSION: bl-PLIF and TLIF show similarly low residual motion in both PS and CS constructs, but ul-PLIF results in increased motion. The fs-TLIF technique is able to further decrease motion compared to fr-TLIF in both the CS and PS constructs.


Subject(s)
Pedicle Screws , Spinal Fusion , Humans , Lumbar Vertebrae/surgery , Spinal Fusion/methods , Biomechanical Phenomena , Internal Fixators , Range of Motion, Articular
16.
N Am Spine Soc J ; 12: 100172, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36185342

ABSTRACT

Background: Occult infections in spinal pseudarthrosis revisions have been reported in the literature, but the relevance of such an infection on patient outcomes is unknown. We aimed to elucidate clinical outcomes and re-revision risks between patients with and without occult infections in spinal revision surgery for pseudarthrosis. Methods: In this matched case-control study, we identified 128 patients who underwent thoracolumbar revision surgery from 2014-2019 for pseudarthrosis of the spine. Among them, 13 (10.2%) revealed an occult infection (defined by at least two positive intraoperative tissue samples with the same pathogen), and nine of these 13 were available for follow-up. We selected 18 of the 115 controls using a 2:1 fuzzy matching based on fusion length and length of follow-up. The patients were followed up to assess subsequent re-revision surgeries and the following postoperative patient-reported outcome measures (PROMs): overall satisfaction, Oswestry Disability Index, 5-level EQ-5D, and Short Form 36. Results: Patient characteristics, surgical data, and length of follow-up were equal between both study groups. The rate of re-revision free survival after the initial pseudarthrosis revision surgery was higher in the occult infection group (77.8%) than the non-infectious controls (44.4%), although not significantly (0.22). The total number of re-revision surgeries, including re-re-revisions, was thirteen (in ten patients) in the control and two (in two patients) in the occult infection group (p = 0.08) after a median follow-up of 24 months (range 13-75). Four cases in the control group underwent re-revision for pseudarthrosis compared to none in the infected group. Satisfactory scores were recorded in all PROMs, with similar scores between the two groups. Conclusions: The presence of an occult infection accompanying spinal pseudarthrosis revision was not inferior to non-infected pseudarthrosis revisions in a matched, small sample size cohort study. This may be explained due to the possibility of targeted treatment of the identified cause of pseudarthrosis.

17.
Spine (Phila Pa 1976) ; 47(24): 1753-1760, 2022 Dec 15.
Article in English | MEDLINE | ID: mdl-36083835

ABSTRACT

STUDY DESIGN: Biomechanical cadaveric study. OBJECTIVE: The aim of this study was to compare the effect of transforaminal endoscopic approaches with open decompression procedures. SUMMARY OF BACKGROUND DATA: Clinical studies have repeatedly highlighted the benefits of endoscopic decompression, however, the biomechanical effects of endoscopic approaches (with and without injury to the disk) have not been studied up to now. MATERIALS AND METHODS: Twelve spinal segments originating from four fresh-frozen cadavers were biomechanically tested in a load-controlled endoscopic transforaminal approach study. Segmental range of motion (ROM) after endoscopic approach was compared with segmental ROM after (1) microsurgical decompression with unilateral laminotomy and (2) midline decompression with bilateral laminotomy. In the intact state and after decompression, the segments were loaded in flexion-extension (FE), lateral shear (LS), lateral bending (LB), anterior shear (AS), and axial rotation (AR). RESULTS: Vertebral segment ROM was comparable between the two endoscopic transforaminal approaches. However, there was a-statistically nonsignificant-trend for a larger ROM after accessing via the inside-out technique: FE: +3% versus +7%, P =0.484; LS: +1% versus +12%, P =0.18; LB: +0.6% versus +9%, P =0.18; AS: +2% versus +11%, P =0.31; AR: -4% versus +5%, P =0.18. No significant difference in vertebral segment ROM was seen between the transforaminal endoscopic approaches and open unilateral decompression. Vertebral segment ROM was significantly smaller with the transforaminal endoscopic approaches compared with midline decompression for almost all loading scenarios: FE: +4% versus +17%, P =0.005; AS: +6% versus 21%, P =0.007; AR: 0% versus +24%, P =0.002. CONCLUSION: The transforaminal endoscopic intracanal technique preserves the native ROM of lumbar vertebral segments and shows a trend toward relative biomechanical superiority over the inside-out technique and open decompression procedures.


Subject(s)
Lumbar Vertebrae , Spinal Fusion , Humans , Biomechanical Phenomena , Lumbar Vertebrae/surgery , Spinal Fusion/methods , Decompression, Surgical/methods , Range of Motion, Articular , Cadaver
18.
World J Orthop ; 13(1): 112-121, 2022 Jan 18.
Article in English | MEDLINE | ID: mdl-35096541

ABSTRACT

BACKGROUND: Four-corner fusion (4CF) is a motion sparing salvage procedure that is used to treat osteoarthritis secondary to advanced scapholunate collapse or longstanding scaphoid nonunion advanced collapse. Little is known about the long-term survivorship and outcomes of 4CF. AIM: To report on clinical and functional long-term outcomes as well as conversion rates to total wrist fusion or arthroplasty. METHODS: The systematic review protocol was registered in the international prospective register of systematic reviews (PROSPERO) and followed the PRISMA guidelines. Original articles were screened using four different databases. Studies with a minimum Level IV of evidence that reported on long-term outcome after 4CF with a minimum follow-up of 5 years were included. Quality assessment was performed using the Methodological Index for Non-Randomized Studies criteria. RESULTS: A total of 11 studies including 436 wrists with a mean follow-up of 11 ± 4 years (range: 6-18 years) was included. Quality assessment according to Methodological Index for Non-Randomized Studies criteria tool averaged 69% ± 11% (range: 50%-87%). Fusion rate could be extracted from 9/11 studies and averaged 91%. Patient-reported outcomes were extracted at last follow-up from 8 studies with an average visual analog scale of 1 ± 1 (range: 0-2) and across 9 studies with an average Disabilities of the Arm, Shoulder and Hand score of 21 ± 8 (range: 8-37). At last follow-up, the cumulative conversion rate to total wrist fusion averaged 6%. There were no conversions to total wrist arthroplasty. CONCLUSION: The 4CF of the wrist is a reliable surgical technique, capable of achieving a good long-term patient satisfaction and survivorship with low rates of conversion to total wrist fusion.

19.
Spine J ; 22(7): 1160-1168, 2022 07.
Article in English | MEDLINE | ID: mdl-35017055

ABSTRACT

BACKGROUND CONTEXT: Patient-specific instruments (PSI) have been well established in spine surgery for pedicle screw placement. However, its utility in spinal decompression surgery is yet to be investigated. PURPOSE: The purpose of this study was to investigate the feasibility and utility of PSI in spinal decompression surgery compared with conventional freehand (FH) technique for both expert and novice surgeons. STUDY DESIGN: Human cadaver study. METHODS: Thirty-two midline decompressions were performed on 4 fresh-frozen human cadavers. An expert spine surgeon and an orthopedic resident (novice) each performed 8 FH and 8 PSI-guided decompressions. Surgical time for each decompression method was measured. Postoperative decompression area, cranial decompression extent in relation to the intervertebral disc, and lateral recess bony overhang were measured on postoperative CT-scans. In the PSI-group, the decompression area and osteotomy accuracy were evaluated. RESULTS: The surgical time was similar in both techniques, with 07:25 min (PSI) versus 06:53 min (FH) for the expert surgeon and 12:36 min (PSI) vs. 11:54 (FH) for the novice surgeon. The postoperative cranial decompression extent and the lateral recess bony overhang did not differ between both techniques and surgeons. Further, the postoperative decompression area was significantly larger with the PSI than with the FH for the novice surgeon (477 vs. 305 mm2; p=.01), but no significant difference was found between both techniques for the expert surgeon. The execution of the decompression differed from the preoperative plan in the decompression area by 5%, and the osteotomy planes had an accuracy of 1-3 mm. CONCLUSION: PSI-guided decompression is feasible and accurate with similar procedure time to the standard FH technique in a cadaver model, which warrants further investigation in vivo. In comparison to the FH technique, a more extensive decompression was achieved with PSI in the novice surgeon's hands in this study. CLINICAL SIGNIFICANCE: The PSI-guided spinal decompression technique may be a useful alternative to FH decompression in certain situations. A special potential of the PSI technique could lie in the technical aid for novice surgeons and in situations with unconventional anatomy or pathologies such as deformity or tumor. This study serves as a starting point toward PSI-guided spinal decompression, but further in vivo investigations are necessary.


Subject(s)
Pedicle Screws , Spinal Fusion , Surgery, Computer-Assisted , Cadaver , Decompression, Surgical/methods , Humans , Lumbar Vertebrae/surgery , Spinal Fusion/methods , Surgery, Computer-Assisted/methods
20.
Eur Spine J ; 31(12): 3696-3702, 2022 Dec.
Article in English | MEDLINE | ID: mdl-34173075

ABSTRACT

BACKGROUND: Anomalous vertebral artery (VA) with loop formation is a rare cause of cervical nerve root compression. Various techniques with anterior and posterior approaches have been described for surgical treatment once conservative treatments fail. We herein present a case treated with the new technique of anterior release, distraction and fusion (ARDF) and further provide an updated review of surgically managed VA loops in the subaxial spine. CASE DESCRIPTION: A 76-year-old female complained of a 6-year history of pulsating, shooting pain in her right arm to the thumb. After obtaining repeated MRI, the VA loop compressing the right-sided C6-nerve root was detected. A neurovascular decompression through ARDF which led to an indirect loop straightening was performed. The patient immediately improved after surgery and remained pain-free 1 year postoperative. CONCLUSION: Neural irritation due to VA loop formation is a rare cause of cervical radiculopathy. While various surgical strategies have been described, we believe that anterior and anterolateral approaches are the safest to yield neurovascular decompression. We described and documented ARDF (anterior VA release, intervertebral distraction and fusion) on a patient case. LEVEL OF EVIDENCE: II (Diagnostic: individual cross-sectional studies with consistently applied reference standard and blinding).


Subject(s)
Radiculopathy , Humans , Female , Aged , Radiculopathy/diagnostic imaging , Radiculopathy/etiology , Radiculopathy/surgery , Vertebral Artery/diagnostic imaging , Vertebral Artery/surgery , Vertebral Artery/abnormalities , Cross-Sectional Studies , Cervical Vertebrae/diagnostic imaging , Cervical Vertebrae/surgery , Magnetic Resonance Imaging/adverse effects
SELECTION OF CITATIONS
SEARCH DETAIL
...