Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Anat ; 238(2): 308-320, 2021 02.
Article in English | MEDLINE | ID: mdl-32996145

ABSTRACT

Sexual displays are some of the most dramatic and varied behaviors that have been documented. The elaboration of such behaviors often relies on the modification of existing morphology. To understand how display elaboration arises, we analyzed the laryngeal anatomy of three species of mice that vary in the presence and complexity of their vocal displays. Mice and rats have a specialized larynx that enables them to produce both low-frequency "audible" sounds, perhaps using vocal fold vibration, as well as distinct mechanisms that are thought to enable higher frequency sounds, such as vocal membrane vibration and intralaryngeal whistles. These mechanisms rely on different structures within the larynx. Using histology, we characterized laryngeal anatomy in Alston's singing mouse (Scotinomys teguina), the northern pygmy mouse (Baiomys taylori), and the laboratory mouse (Mus musculus), which produce different types of vocalizations. We found evidence of a vocal membrane in all species, as well as species differences in vocal fold and ventral pouch size. Presence of a vocal membrane in these three species, which are not known to use vocal membrane vibration, suggests that this structure may be widespread among muroid rodents. An expanded ventral pouch in singing and pygmy mice suggests that these mice may use an intralaryngeal whistle to produce their advertisement songs, and that an expanded ventral pouch may enable lower frequencies than laboratory mouse whistle-produced sounds. Variation in the laryngeal anatomy of rodents fits into a larger pattern across terrestrial vertebrates, where the development and modification of vocal membranes and pouches, or air sacs, are common mechanisms by which vocalizations diversify. Understanding variation in the functional anatomy of relevant organs is the first step in understanding how morphological changes enable novel displays.


Subject(s)
Arvicolinae/anatomy & histology , Larynx/anatomy & histology , Animals , Female , Male , Vocalization, Animal
2.
Proc Biol Sci ; 285(1877)2018 04 25.
Article in English | MEDLINE | ID: mdl-29695445

ABSTRACT

Advertisement displays often seem extravagant and expensive, and are thought to depend on the body condition of a signaller. Nevertheless, we know little about how signallers adjust effort based on condition, and few studies find a strong relationship between natural variation in condition and display. To examine the relationship between body condition and signal elaboration more fully, we characterized physiological condition and acoustic displays in a wild rodent with elaborate vocalizations, Alston's singing mouse, Scotinomys teguina We found two major axes of variation in condition-one defined by short-term fluctuations in caloric nutrients, and a second by longer-term variation in adiposity. Among acoustic parameters, song effort was characterized by high rates of display and longer songs. Song effort was highly correlated with measures of adiposity. We found that leptin was a particularly strong predictor of display effort. Leptin is known to influence investment in other costly traits, such as immune function and reproduction. Plasma hormone levels convey somatic state to a variety of tissues, and may govern trait investment across vertebrates. Such measures offer new insights into how animals translate body condition into behavioural and life-history decisions.


Subject(s)
Adiposity , Arvicolinae/physiology , Vocalization, Animal , Animals , Body Weight , Costa Rica , Hormones/blood , Male , Nutrients/blood
SELECTION OF CITATIONS
SEARCH DETAIL
...