Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 65
Filter
1.
Sci Total Environ ; 927: 172124, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38565351

ABSTRACT

Recent studies have highlighted the prevalence of microplastic (MP) pollution in the global marine environment and these pollutants have been found to contaminate even remote regions, including the Southern Ocean south of the polar front. Previous studies in this region have mostly focused on MPs larger than 300 µm, potentially underestimating the extent of MP pollution. This study is the first to investigate MPs in marine surface waters south of the polar front, with a focus on small MPs 500-11 µm in size. Seventeen surface water samples were collected in the southern Weddell Sea using an in-house-designed sampling system. The analysis of the entire sample using micro-Fourier transform infrared spectroscopy (µFTIR) with focal plane array (FPA) detection revealed the presence of MPs in all samples, with the vast majority of the MPs detected being smaller than 300 µm (98.3 %). The mean concentration reached 43.5 (± 83.8) MPs m-3, with a wide range from 0.5 to 267.2 MPs m-3. The samples with the highest concentrations differed from the other samples in that they were collected north of the continental slope and the Antarctic Slope Current. Sea ice conditions possibly also influenced these varying concentrations. This study reports high concentrations of MPs compared to other studies in the region. It emphasizes the need to analyze small MPs, down to a size of 11 µm or even smaller, in the Antarctic Treaty Area to gain a more comprehensive understanding of MP pollution and its potential ecological impacts.

2.
Environ Sci Technol ; 58(12): 5491-5499, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38478875

ABSTRACT

Measured microplastic concentrations in river surface waters fluctuate greatly. This variability is affected by season and is codriven by factors, such as sampling methodologies, sampling site, or sampling position within site. Unfortunately, most studies comprise single-instance measurements, whereas extended sampling periods are better suited to assessing the relevance of such factors. Moreover, microplastic concentrations in riverine water column remain underexplored. Similar to the oceans, however, this compartment likely holds significant amounts of microplastics. By representatively sampling the entire Rhine River cross-section near Basel through five sampling points over 22 months, we found a median microplastic (50-3000 µm) concentration of 4.48 n m-3, and estimated a widely ranging load between 4.04 × 102 n s-1 and 3.57 × 105 n s-1. We also show that the microplastic concentration in the water column was not well explained by river discharge. This suggests that although high discharge events as observed here can over short time periods lead to peak microplastic concentrations (e.g., 1.23 × 102 n m-3), microplastic load variance was not dominated by discharge in the study area.


Subject(s)
Microplastics , Water Pollutants, Chemical , Rivers , Plastics , Water , Water Pollutants, Chemical/analysis , Environmental Monitoring/methods
3.
Sci Total Environ ; 851(Pt 2): 158314, 2022 Dec 10.
Article in English | MEDLINE | ID: mdl-36041615

ABSTRACT

Microplastic (<5 mm; MP) pollution has been an emerging threat for marine ecosystems around the globe with increasing evidence that even the world's most remote areas, including Antarctica, are no longer unaffected. Few studies however, have examined MP in Antarctic biota, and especially those from Antarctic regions with low human activity, meaning little is known about the extent to which biota are affected. The aim of this study was to investigate, for the first time, the occurrence of MP in the emperor penguin (Aptenodytes forsteri), the only penguin species breeding around Antarctica during the austral winter, and an endemic apex predator in the Southern Ocean. To assess MP ingestion, the gizzards of 41 emperor penguin chicks from Atka Bay colony (Dronning Maud Land, Antarctica), were dissected and analyzed for MP >500 µm using Attenuated Total Reflection Fourier-transform Infrared (ATR-FTIR) spectroscopy. A total of 85 putative particles, mostly in the shape of fibers (65.9 %), were sorted. However, none of the particles were identified as MP applying state-of-the-art methodology. Sorted fibers were further evidenced to originate from contamination during sample processing and analyses. We find that MP concentrations in the local food web of the Weddell Sea and Dronning Maud Land coastal and marginal sea-ice regions; the feeding grounds to chick-rearing emperor penguin adults, are currently at such low levels that no detectable biomagnification is occurring via trophic transfer. Being in contrast to MP studies on other Antarctic and sub-Antarctic penguin species, our comparative discussion including these studies, highlights the importance for standardized procedures for sampling, sample processing and analyses to obtain comparable results. We further discuss other stomach contents and their potential role for MP detection, as well as providing a baseline for the long-term monitoring of MP in apex predator species from this region.


Subject(s)
Spheniscidae , Animals , Humans , Microplastics , Antarctic Regions , Plastics , Ecosystem , Bays , Eating
4.
Polar Biol ; 45(2): 345-358, 2022.
Article in English | MEDLINE | ID: mdl-35221461

ABSTRACT

The Antarctic ecosystem is progressively exposed to anthropogenic contaminants, such as polycyclic aromatic hydrocarbons (PAHs). So far, it is largely unknown if PAHs leave a mark in the physiology of high-Antarctic fish. We approached this issue via two avenues: first, we examined the functional response of the aryl hydrocarbon receptor (Ahr), which is a molecular initiating event of many toxic effects of PAHs in biota. Chionodraco hamatus and Trematomus loennbergii served as representatives for high-Antarctic Notothenioids, and Atlantic cod, Gadus morhua as non-polar reference species. We sequenced and cloned the Ahr ligand binding domain (LBD) of the Notothenioids and deployed a GAL4-based luciferase reporter gene assay expressing the Ahr LBD. Benzo[a]pyrene (BaP), beta-naphthoflavone and chrysene were used as ligands for the reporter gene assay. Second, we investigated the energetic costs of Ahr activation in isolated liver cells of the Notothenioids during acute, non-cytotoxic BaP exposure. In the reporter assay, the Ahr LBD of Atlantic cod and the Antarctic Notothenioids were activated by the ligands tested herein. In the in vitro assays with isolated liver cells of high-Antarctic Notothenioids, BaP exposure had no effect on overall respiration, but caused shifts in the respiration dedicated to protein synthesis. Thus, our study demonstrated that high-Antarctic fish possess a functional Ahr that can be ligand-activated in a concentration-dependent manner by environmental contaminants. This is associated with altered cost for cellular protein synthesis. Future studies have to show if the toxicant-induced activation of the Ahr pathway may lead to altered organism performance of Antarctic fish. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s00300-021-02992-4.

5.
Curr Biol ; 32(4): 842-850.e4, 2022 02 28.
Article in English | MEDLINE | ID: mdl-35030328

ABSTRACT

A breeding colony of notothenioid icefish (Neopagetopsis ionah, Nybelin 1947) of globally unprecedented extent has been discovered in the southern Weddell Sea, Antarctica. The colony was estimated to cover at least ∼240 km2 of the eastern flank of the Filchner Trough, comprised of fish nests at a density of 0.26 nests per square meter, representing an estimated total of ∼60 million active nests and associated fish biomass of >60,000 tonnes. The majority of nests were each occupied by 1 adult fish guarding 1,735 eggs (±433 SD). Bottom water temperatures measured across the nesting colony were up to 2°C warmer than the surrounding bottom waters, indicating a spatial correlation between the modified Warm Deep Water (mWDW) upflow onto the Weddell Shelf and the active nesting area. Historical and concurrently collected seal movement data indicate that this concentrated fish biomass may be utilized by predators such as Weddell seals (Leptonychotes weddellii, Lesson 1826). Numerous degraded fish carcasses within and near the nesting colony suggest that, in death as well as life, these fish provide input for local food webs and influence local biogeochemical processing. To our knowledge, the area surveyed harbors the most spatially expansive continuous fish breeding colony discovered to date globally at any depth, as well as an exceptionally high Antarctic seafloor biomass. This discovery provides support for the establishment of a regional marine protected area in the Southern Ocean under the Convention on the Conservation of Antarctic Marine Living Resources (CCAMLR) umbrella. VIDEO ABSTRACT.


Subject(s)
Seals, Earless , Animals , Antarctic Regions , Fishes , Food Chain , Water
6.
Microplast nanoplast ; 1(1): 17, 2021.
Article in English | MEDLINE | ID: mdl-34939039

ABSTRACT

Marine plastic abundance has increased over the past 60 years and microplastics (< 5 mm) constitute a primary component of such litter. Filter-feeding megafauna, such as the whale shark, might be particularly affected by microplastic pollution as their feeding mode requires filtration of up to thousands of cubic meters of water. In addition, the habitat range of whale sharks intersects with several recognized microplastic pollution hotspots, among which is the Coral Triangle. Direct evidence for microplastic ingestion in whale sharks however, has not yet been presented. Here we show that whale shark scat collected in the Philippines from 2012 to 2019 contained a mean of 2.8 microplastics g- 1. Contrary to our expectations, the microplastic concentration in the scat remained consistent from 2012 to 2019. Water samples from the study site in 2019 indicated that the local microplastic pollution (5.83 particles m- 3) was higher than in surface waters in other whale shark habitats, but well below other pollution hot-spots found in Southeast Asia and China (range: 100-4100 particles m- 3). With the predicted growth in plastic use, leading to increased plastic marine pollution, whale sharks are expected to become more exposed to this form of pollution. To what extent microplastic ingestion impacts the overall health status of this endangered species remains an open question. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s43591-021-00017-9.

7.
Environ Sci Technol ; 55(23): 15900-15911, 2021 12 07.
Article in English | MEDLINE | ID: mdl-34841863

ABSTRACT

Microplastic (MP) pollution has been found in the Southern Ocean surrounding Antarctica, but many local regions within this vast area remain uninvestigated. The remote Weddell Sea contributes to the global thermohaline circulation, and one of the two Antarctic gyres is located in that region. In the present study, we evaluate MP (>300 µm) concentration and composition in surface (n = 34) and subsurface water samples (n = 79, ∼11.2 m depth) of the Weddell Sea. All putative MP were analyzed by attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy. MP was found in 65% of surface and 11.4% of subsurface samples, with mean (±standard deviation (SD)) concentrations of 0.01 (±0.01 SD) MP m-3 and 0.04 (±0.1 SD) MP m-3, respectively, being within the range of previously reported values for regions south of the Polar Front. Additionally, we aimed to determine whether identified paint fragments (n = 394) derive from the research vessel. Environmentally sampled fragments (n = 101) with similar ATR-FTIR spectra to reference paints from the research vessel and fresh paint references generated in the laboratory were further subjected to micro-X-ray fluorescence spectroscopy (µXRF) to compare their elemental composition. This revealed that 45.5% of all recovered MP derived from vessel-induced contamination. However, 11% of the measured fragments could be distinguished from the reference paints via their elemental composition. This study demonstrates that differentiation based purely on visual characteristics and FTIR spectroscopy might not be sufficient for accurately determining sample contamination sources.


Subject(s)
Microplastics , Water Pollutants, Chemical , Antarctic Regions , Environmental Monitoring , Plastics , Water Pollutants, Chemical/analysis
8.
Environ Pollut ; 284: 117166, 2021 Sep 01.
Article in English | MEDLINE | ID: mdl-33895573

ABSTRACT

Microplastic (MP) occurrence is a major global issue, though data on MP occurrence in the Philippines is limited and the potential effects of MPs on biota are still poorly studied. MP occurrence in fishes remains a concern, especially in economically and ecologically important species such as Siganus spp. This study determined MP occurrence in the gastrointestinal tract of wild rabbit fishes from Tañon Strait, the largest marine protected area in the Philippines. Siganus canaliculatus (n = 65), S. spinus (n = 17), S. guttatus (n = 5), S. virgatus (n = 8) and S. punctatus (n = 1) were sampled from the north and south of the strait. All MPs isolated from the gut of the rabbit fishes except for fibers were chemically analyzed by ATR-FTIR spectroscopy; an established library was used to determine the polymeric identities. Five particles were confirmed as polyester, polyamide, polyethylene or phenoxy resin MPs. The average MP abundance was 0.05 items/individual (S. virgatus > S. guttatus > S. canaliculatus > S. spinus = S. punctatus), which is comparable to studies conducted in other locations using similar methods. Fibers were counted (1556 in total), but not chemically analyzed. The low MP abundance in the samples may be attributed to the capability of rabbit fishes to discriminate food preferences. However, the risks associated with MPs should not be underestimated, especially as all parts of the fishes-including the gut-are utilized as human foods in the Philippines and many other Asian countries.


Subject(s)
Microplastics , Water Pollutants, Chemical , Animals , Asia , Environmental Monitoring , Fishes , Philippines , Plastics , Rabbits , Water Pollutants, Chemical/analysis
9.
Environ Sci Pollut Res Int ; 28(3): 2893-2903, 2021 Jan.
Article in English | MEDLINE | ID: mdl-32895793

ABSTRACT

Marine debris is known for its ubiquitousness and harmful effects on marine life. This study is the first analysis to provide information on the distribution of floating marine debris in German waters using aerial survey data collected between 2002 and 2016. During regular harbour porpoise monitoring flights, 191,167 km were covered and 26,512 floating debris items recorded (average encounter rate 0.1387 items/km). Debris was encountered more often in the North Sea than in the Baltic Sea (0.16 items/km; 0.08 items/km). The average encounter rate was higher in offshore waters than in coastal areas. Overlaps of marine debris distribution with 'Special Areas of Conservation' are a particular reason for concern. Moreover, the spring months (March-May) were identified to be the time of the year with the highest average encounter rates for marine debris. Fishing-related debris was shown to contribute up to 25% of the total number of all observed items. This study shows that opportunistically collected data on marine debris from aerial surveys are valuable for identifying distribution patterns of floating debris without additional survey effort and costs. These data can be used as baseline information to inform management schemes such as the Marine Strategy Framework Directive.


Subject(s)
Plastics , Waste Products , Environmental Monitoring , North Sea , Surveys and Questionnaires , Waste Products/analysis
10.
Environ Pollut ; 267: 115664, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33254623

ABSTRACT

Rivers play a crucial role in collecting and transporting microplastics. Nonetheless, the degree to which microplastic pollution of freshwaters affects its biota remains understudied. Sampling of wild fishes has so far demonstrated that microplastic ingestion occurs commonly across species with alternate feeding modes, as well as in different environmental compartments. Due to the exploratory nature of many preceding studies, drawing insight about factors driving microplastic ingestion has remained difficult. It continues unknown for instance, what the importance of varying environmental microplastic concentrations is to predict ingestion rates in fish from those areas. Here we show that ingestion rates of microplastic particles (>300 µm) in the benthic round goby from the Rhine river were negligible (1 particle in 417 fish). Among the 535 visually selected putative microplastic fragments, stringent data processing steps to reduce the number of false positives during reference library searches, revealed the importance of taking such steps into account in comparison with other data processing routines. Our observations remained consistent, despite having collected fish from a strongly polluted site of the lower Rhine, which served as contrast to a significantly cleaner site upstream. These results demonstrate that higher environmental microplastic concentrations are not necessarily mirrored by higher ingestion rates in a given fish species.


Subject(s)
Perciformes , Water Pollutants, Chemical , Animals , Biota , Environmental Monitoring , Fishes , Fresh Water , Plastics , Rivers , Water Pollutants, Chemical/toxicity
11.
Sci Total Environ ; 707: 135579, 2020 Mar 10.
Article in English | MEDLINE | ID: mdl-31784148

ABSTRACT

Rivers are pivotal carriers of microplastic (MP) towards the oceans. Investigative data on MP pollution in rivers at specific timepoints is continuously compiled. However, such snapshot data can only roughly indicate the long-term extent of contamination and particle fluxes; modelling studies informed by this limited data are prone to large uncertainties. The present study sought to narrow this knowledge gap by examining the differences in MP concentrations, loads and compositions at three nival tributaries and the Rhine River in Basel, Switzerland, as well as two downstream pluvial Lower Rhine River locations in Germany over four seasons throughout 2016-2017. MP concentrations (>0.3 mm) correlated positively with average water discharge and catchment size of the evaluated stream locations and MP concentrations were significantly higher at the downstream pluvial than upstream nival sites. There was no coherent pattern in MP concentration fluctuations between seasons across the six sites investigated, and no correlation with recent precipitation. These findings suggest that temporal variations in MP fluxes towards the North Sea through the year are dominated by the different discharge regimes along the river course. This study also corroborates theoretical models that predict the highest MP loads move downstream the Rhine River during the European winter months.

12.
Environ Sci Technol ; 53(10): 6053-6062, 2019 05 21.
Article in English | MEDLINE | ID: mdl-31021624

ABSTRACT

Rivers are major transport vectors for microplastics (MP) toward the sea. However, there is evidence that MP can temporarily or permanently be inhibited from migrating downstream by retention in sediments or ingestion by organisms. MP concentrations, compositions, and fate within the different compartments of the fluvial environment are poorly understood. Here, benthic, midstream sediments of two undammed, open-flowing stretches were investigated in the Rhine River, one of the world's busiest inland waterways. Twenty-five samples were collected at ten sites via riverbed access through a diving bell or dredging. We performed the first comprehensive analysis of riverbed sediment aliquots that avoids visual selection bias using state-of-the art automated micro-Fourier-transform infrared spectroscopy (µFTIR) imaging. MP numbers ranged between 0.26 ± 0.01 and 11.07 ± 0.6 × 103 MP kg-1 while MP particles <75 µm accounted for a mean numerical proportion ± SD of 96 ± 6%. MP concentrations decreased with sediment depth. Eighteen polymers were identified in the size range of 11-500 µm; the acrylates/polyurethane/varnish (APV) cluster was found at all sites (mean numerical proportion, 70 ± 19%), possibly indicating particulate pollution from ship antifouling paint. Overall, polymers denser than freshwater (>1 g cm-3) dominated (85 ± 18%), which contrasts the large proportions of low-density polymers previously reported in near-surface compartments of the Rhine.


Subject(s)
Plastics , Water Pollutants, Chemical , Environmental Monitoring , Geologic Sediments , Rivers
13.
Genes (Basel) ; 10(3)2019 03 14.
Article in English | MEDLINE | ID: mdl-30875862

ABSTRACT

The question as to how early life experiences are stored on a molecular level and affect traits later in life is highly topical in ecology, medicine, and epigenetics. In this study, we use a fish model to investigate whether DNA methylation mediates early life experiences and predetermines a territorial male reproductive phenotype. In fish, adult reproductive phenotypes frequently depend on previous life experiences and are often associated with distinct morphological traits. DNA methylation is an epigenetic mechanism which is both sensitive to environmental conditions and stably inherited across cell divisions. We therefore investigate early life predisposition in the round goby Neogobius melanostomus by growth back-calculations and then study DNA methylation by MBD-Seq in the brain region controlling vertebrate reproductive behavior, the hypothalamus. We find a link between the territorial reproductive phenotype and high growth rates in the first year of life. However, hypothalamic DNA methylation patterns reflect the current behavioral status independently of early life experiences. Together, our data suggest a non-predetermination scenario in the round goby, in which indeterminate males progress to a non-territorial status in the spawning season, and in which some males then assume a specialized territorial phenotype if current conditions are favorable.


Subject(s)
DNA Methylation , Hypothalamus/chemistry , Perciformes/physiology , Territoriality , Animals , Behavior, Animal/physiology , Epigenesis, Genetic , Male , Perciformes/genetics , Quantitative Trait Loci , Reproduction , Sequence Analysis, DNA/veterinary
14.
Environ Pollut ; 245: 634-641, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30476893

ABSTRACT

Microplastics are emerging pollutants in water bodies worldwide. The environmental entry areas must be studied to localise their sources and develop preventative and remedial solutions. Rivers are major contributors to the marine microplastics load. Here, we focus on a specific type of plastic microbead (diameter 286-954 µm, predominantly opaque, white-beige) that was repeatedly identified in substantial numbers between kilometres 677 and 944 of the Rhine River, one of Europe's main waterways. Specifically, we aimed (i) to confirm the reported abrupt increase in microbead concentrations between the cities of Leverkusen and Duisburg and (ii) to assess the concentration gradient of these particles along this stretch at higher resolution. Furthermore, we set out (iii) to narrow down the putative entry stretch from 81.3 km, as reported in an earlier study, to less than 20 km according to our research design, and (iv) to identify the chemical composition of the particles and possibly reveal their original purpose. Surface water filtration (mesh: 300 µm, n = 9) at regular intervals along the focal river stretch indicated the concentration of these spherules increased from 0.05 to 8.3 particles m-3 over 20 km. This spot sampling approach was supported by nine suspended solid samples taken between 2014 and 2017, encompassing the river stretch between Leverkusen and Duisburg. Ninety-five percent of microbeads analysed (202/212) were chemically identified as crosslinked polystyrene-divinylbenzene (PS-DVB, 146/212) or polystyrene (PS, 56/212) via Raman or Fourier-transform infrared spectroscopy. Based on interpretation of polymer composition, surface structure, shape, size and colour, the PS(-DVB) microbeads are likely to be used ion-exchange resins, which are commonly applied in water softening and various industrial purification processes. The reported beads contribute considerably to the surface microplastic load of the Rhine River and their potential riverine entry area was geographically narrowed down.


Subject(s)
Environmental Monitoring/methods , Polystyrenes/analysis , Water Pollutants, Chemical/analysis , Environmental Pollutants/analysis , Europe , Microspheres , Plastics/analysis , Rivers/chemistry
15.
BMC Evol Biol ; 18(1): 34, 2018 03 22.
Article in English | MEDLINE | ID: mdl-29566669

ABSTRACT

BACKGROUND: It has been proposed that non-genetic inheritance could promote species fitness. Non-genetic inheritance could allow offspring to benefit from the experience of their parents, and could advocate pre-adaptation to prevailing and potentially selective conditions. Indeed, adaptive parental effects have been modeled and observed, but the molecular mechanisms behind them are far from understood. RESULTS: In the present study, we investigated whether maternal RNA can carry information about environmental conditions experienced by the mother in a wild vertebrate. Maternal RNA directs the development of the early embryo in many non-mammalian vertebrates and invertebrates. However, it is not known whether vertebrate maternal RNA integrates information about the parental environment. We sequenced the maternal RNA contribution from a model that we expected to rely on parental effects: the invasive benthic fish species Neogobius melanostomus (Round Goby). We found that maternal RNA expression levels correlated with the water temperature experienced by the mother before oviposition, and identified temperature-responsive gene groups such as core nucleosome components or the microtubule cytoskeleton. CONCLUSIONS: Our findings suggest that the maternal RNA contribution may incorporate environmental information. Maternal RNA should therefore be considered a potentially relevant pathway for non-genetic inheritance. Also, the ability of a species to integrate environmental information in the maternal RNA contribution could potentially contribute to species fitness and may also play a role in extraordinary adaptive success stories of invasive species such as the round goby.


Subject(s)
Animals, Wild/genetics , Embryo, Nonmammalian/metabolism , Perciformes/embryology , Perciformes/genetics , RNA/metabolism , Sequence Analysis, RNA/methods , Animals , Base Sequence , Embryonic Development/genetics , Female , Gene Expression Regulation, Developmental , Principal Component Analysis , Signal Transduction/genetics , Temperature
16.
Environ Toxicol Chem ; 37(5): 1487-1495, 2018 05.
Article in English | MEDLINE | ID: mdl-29315775

ABSTRACT

The aryl hydrocarbon receptor (AhR) pathway mediates many, if not all, responses of fish to dioxin-like compounds. The Southern Ocean is progressively exposed to increasing concentrations of anthropogenic pollutants. Antarctic fish are known to accumulate those pollutants, yet nothing is known about their capability to induce chemical biotransformation via the AhR pathway. The objective of the present study was to investigate whether Antarctic eelpout, Pachycara brachycephalum, respond to anthropogenic pollutants by activation of the AhR and its target gene cytochrome P4501A (CYP1A), and of superoxide dismutase (SOD), which served as a representative for oxidative stress. We exposed P. brachycephalum to 10 and 100 mg benzo[a]pyrene (BaP)/kg body weight for 10 d and measured the expression of AhR, CYP1A, and SOD in liver tissue via quantitative polymerase chain reaction. We identified two distinct AhR isoforms in the liver of P. brachycephalum. Antarctic eelpout responded to both BaP exposures by an up-regulation of AhR and SOD, and by a particularly strong induction of CYP1A expression, which remained high until day 10 of the exposure time. Our data suggest that P. brachycephalum possesses the potential to up-regulate xenobiotic biotransformation pathways, at least at the gene expression level. The time course of the AhR and CYP1A response points to an efficient but slow xenobiotics metabolism. Moreover, BaP exposure could include adverse effects such as oxidative stress. Environ Toxicol Chem 2018;37:1487-1495. © 2018 SETAC.


Subject(s)
Benzo(a)pyrene/toxicity , Eels/genetics , Gene Expression Regulation/drug effects , Receptors, Aryl Hydrocarbon/metabolism , Superoxide Dismutase/metabolism , Animals , Antarctic Regions , Cytochrome P-450 CYP1A1/genetics , Cytochrome P-450 CYP1A1/metabolism , Liver/drug effects , Liver/metabolism , Phylogeny , Receptors, Aryl Hydrocarbon/genetics
17.
Chemosphere ; 193: 213-222, 2018 Feb.
Article in English | MEDLINE | ID: mdl-29136567

ABSTRACT

It has been suggested that High-Antarctic waters, despite their remoteness from human activities, are impacted by anthropogenic pollution, and that the local biota are accumulating the contaminants. At present, no data exist on persistent organic pollutant (POP) body burdens for notothenioid fish inhabiting the High-Antarctic Weddell Sea. We determined the pollutant load in white muscle tissue of red- and white-blooded notothenoids from the Weddell Sea (Trematomus loennbergii and Chionodraco hamatus, respectively), and compared them to our previous measurements of POPs in Low-Antarctic notothenioids. Analytes included various organochlorine pesticides (OCPs), polychlorinated biphenyls (indicator (i) PCBs, dioxine-like (dl) PCBs) and polybrominated diphenyl ethers (PBDEs). The analytical concentrations were converted into 2,3,7,8-TCDD toxic equivalents (TEQs). Compared to T. loennbergii, C. hamatus had lower levels of ß-HCH (0.45 vs. 4.5 ng g-1 lipid weight), and Σ iPCBs (30 vs. 39 ng g-1 lipid weight), as well as lower levels of Σ PBDEs (131 vs. 261 ng g-1 fresh weight). POP body burdens and TEQs were mostly similar to those of Low-Antarctic notothenioids analysed previously, and not related to the trophic positions of the species. The variations in POP levels between and within High- and Low-Antarctic notothenioids only marginally corresponded to sampling site, ecological differences or trophic levels of the species, and might rather be related to metabolism or age effects. The present findings suggest that fishes of High-Antarctic waters, although this area is more remote and less influenced by local human activities, do not show lower POP body burdens than fishes from Low-Antarctic waters.


Subject(s)
Environmental Monitoring , Fishes/metabolism , Water Pollutants, Chemical/metabolism , Animals , Antarctic Regions , Dioxins/analysis , Dioxins/metabolism , Halogenated Diphenyl Ethers/analysis , Halogenated Diphenyl Ethers/metabolism , Hexachlorocyclohexane/metabolism , Hydrocarbons, Chlorinated/analysis , Hydrocarbons, Chlorinated/metabolism , Perciformes/metabolism , Pesticides/analysis , Pesticides/metabolism , Polychlorinated Biphenyls/analysis , Polychlorinated Biphenyls/metabolism , Polychlorinated Dibenzodioxins/analysis , Polychlorinated Dibenzodioxins/metabolism , Water Pollutants, Chemical/analysis
18.
Article in English | MEDLINE | ID: mdl-28703776

ABSTRACT

Research on the uptake and effects of bioplastics by aquatic organisms is still in its infancy. Here, we aim to advance the field by comparing uptake and effects of microplastic particles (MPP) of a biodegradable bioMPP (polyhydroxybutyrate (PHB)) and petroleum-based MPP (polymethylmethacrylate (PMMA)) in the freshwater amphipod Gammarus fossarum. Ingestion of both MPP in different particle sizes (32-250 µm) occurred after 24 h, with highest ingestion of particles in the range 32-63 µm and almost complete egestion after 64 h. A four-week effect-experiment showed a significant decrease of the assimilation efficiency in amphipods exposed to the petroleum-based MPP from week two onwards. The petroleum-based PMMA affected assimilation efficiency significantly in contrast to the biodegradable PHB, but overall differences in direct comparison of MPP types were small. Both MPP types led to a significantly lower wet weight gain relative to the control treatments. After four weeks, differences between both MPP types and silica, used as a natural particle control, were detected. In summary, these results suggest that both MPP types provoke digestive constraints on the amphipods, which go beyond those of natural non-palatable particles. This highlights the need for more detailed research comparing environmental effects of biodegradable and petroleum-based MPP and testing those against naturally occurring particle loads.


Subject(s)
Amphipoda/drug effects , Hydroxybutyrates/toxicity , Polyesters/toxicity , Polymethyl Methacrylate/toxicity , Amphipoda/metabolism , Animals , Digestion/drug effects , Eating , Fresh Water , Hydroxybutyrates/pharmacokinetics , Particle Size , Petroleum , Polyesters/pharmacokinetics , Polymethyl Methacrylate/pharmacokinetics
19.
BMC Genomics ; 18(1): 177, 2017 02 16.
Article in English | MEDLINE | ID: mdl-28209125

ABSTRACT

BACKGROUND: Vertebrate mitochondrial genomes are optimized for fast replication and low cost of RNA expression. Accordingly, they are devoid of introns, are transcribed as polycistrons and contain very little intergenic sequences. Usually, vertebrate mitochondrial genomes measure between 16.5 and 17 kilobases (kb). RESULTS: During genome sequencing projects for two novel vertebrate models, the invasive round goby and the sand goby, we found that the sand goby genome is exceptionally small (16.4 kb), while the mitochondrial genome of the round goby is much larger than expected for a vertebrate. It is 19 kb in size and is thus one of the largest fish and even vertebrate mitochondrial genomes known to date. The expansion is attributable to a sequence insertion downstream of the putative transcriptional start site. This insertion carries traces of repeats from the control region, but is mostly novel. To get more information about this phenomenon, we gathered all available mitochondrial genomes of Gobiidae and of nine gobioid species, performed phylogenetic analyses, analysed gene arrangements, and compared gobiid mitochondrial genome sizes, ecological information and other species characteristics with respect to the mitochondrial phylogeny. This allowed us amongst others to identify a unique arrangement of tRNAs among Ponto-Caspian gobies. CONCLUSIONS: Our results indicate that the round goby mitochondrial genome may contain novel features. Since mitochondrial genome organisation is tightly linked to energy metabolism, these features may be linked to its invasion success. Also, the unique tRNA arrangement among Ponto-Caspian gobies may be helpful in studying the evolution of this highly adaptive and invasive species group. Finally, we find that the phylogeny of gobiids can be further refined by the use of longer stretches of linked DNA sequence.


Subject(s)
Evolution, Molecular , Genome, Mitochondrial/genetics , Perciformes/genetics , Phylogeny , Whole Genome Sequencing , Animals , Gene Rearrangement
20.
Ecol Evol ; 7(2): 720-732, 2017 01.
Article in English | MEDLINE | ID: mdl-28116066

ABSTRACT

Animal personalities are an important factor that affects the dispersal of animals. In the context of aquatic species, dispersal modeling needs to consider that most freshwater ecosystems are highly fragmented by barriers reducing longitudinal connectivity. Previous research has incorporated such barriers into dispersal models under the neutral assumption that all migrating animals attempt to ascend at all times. Modeling dispersal of animals that do not perform trophic or reproductive migrations will be more realistic if it includes assumptions of which individuals attempt to overcome a barrier. We aimed to introduce personality into predictive modeling of whether a nonmigratory invasive freshwater fish (the round goby, Neogobius melanostomus) will disperse across an in-stream barrier. To that end, we experimentally assayed the personalities of 259 individuals from invasion fronts and established round goby populations. Based on the population differences in boldness, asociability, and activity, we defined a priori thresholds with bolder, more asocial, and more active individuals having a higher likelihood of ascent. We then combined the personality thresholds with swimming speed data from the literature and in situ measurements of flow velocities in the barrier. The resulting binary logistic regression model revealed probabilities of crossing a barrier which depended not only on water flow and fish swimming speed but also on animal personalities. We conclude that risk assessment through predictive dispersal modeling across fragmented landscapes can be advanced by including personality traits as parameters. The inclusion of behavior into modeling the spread of invasive species can help to improve the accuracy of risk assessments.

SELECTION OF CITATIONS
SEARCH DETAIL
...