Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Res Sq ; 2024 Mar 07.
Article in English | MEDLINE | ID: mdl-38496527

ABSTRACT

Brain-machine interface performance is largely affected by the neuroinflammatory responses resulting in large part from blood-brain barrier (BBB) damage following intracortical microelectrode implantation. Recent findings strongly suggest that certain gut bacterial constituents penetrate the BBB and are resident in various brain regions of rodents and humans, both in health and disease. Therefore, we hypothesized that damage to the BBB caused by microelectrode implantation could amplify dysregulation of the microbiome-gut-brain axis. Here, we report that bacteria, including those commonly found in the gut, enter the brain following intracortical microelectrode implantation in mice implanted with single-shank silicon microelectrodes. Systemic antibiotic treatment of mice implanted with microelectrodes to suppress bacteria resulted in differential expression of bacteria in the brain tissue and a reduced acute inflammatory response compared to untreated controls, correlating with temporary improvements in microelectrode recording performance. Long-term antibiotic treatment resulted in worsening microelectrode recording performance and dysregulation of neurodegenerative pathways. Fecal microbiome composition was similar between implanted mice and an implanted human, suggesting translational findings. However, a significant portion of invading bacteria was not resident in the brain or gut. Together, the current study established a paradigm-shifting mechanism that may contribute to chronic intracortical microelectrode recording performance and affect overall brain health following intracortical microelectrode implantation.

2.
Bioanalysis ; 10(20): 1691-1703, 2018 Oct 01.
Article in English | MEDLINE | ID: mdl-30412689

ABSTRACT

Ultrahigh performance liquid chromatography (UHPLC) uses small stationary-phase particle size (<2 µm) and high pressure in order to achieve rapid and efficient separations. The speed and high resolution of this method has made it a valuable tool for analyzing the complex glycosylation patterns found in post-translationally modified proteins. This article highlights the differences between UHPLC and HPLC and reviews recent UHPLC applications and developments for detecting glycosylated proteins (e.g., glycomics studies) and characterizing glycosylated pharmaceuticals (e.g., monoclonal antibodies).


Subject(s)
Chromatography, High Pressure Liquid/methods , Polysaccharides/analysis , Proteins/chemistry , Animals , Antibodies, Monoclonal/chemistry , Chromatography, High Pressure Liquid/instrumentation , Glycosylation , Humans , Immunoglobulin G/chemistry , Protein Processing, Post-Translational
SELECTION OF CITATIONS
SEARCH DETAIL
...