Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Chem Biol ; 10(9): 774-9, 2014 Sep.
Article in English | MEDLINE | ID: mdl-25086508

ABSTRACT

Human fatty acid synthase (hFAS) is a complex, multifunctional enzyme that is solely responsible for the de novo synthesis of long chain fatty acids. hFAS is highly expressed in a number of cancers, with low expression observed in most normal tissues. Although normal tissues tend to obtain fatty acids from the diet, tumor tissues rely on de novo fatty acid synthesis, making hFAS an attractive metabolic target for the treatment of cancer. We describe here the identification of GSK2194069, a potent and specific inhibitor of the ß-ketoacyl reductase (KR) activity of hFAS; the characterization of its enzymatic and cellular mechanism of action; and its inhibition of human tumor cell growth. We also present the design of a new protein construct suitable for crystallography, which resulted in what is to our knowledge the first co-crystal structure of the human KR domain and includes a bound inhibitor.


Subject(s)
3-Oxoacyl-(Acyl-Carrier-Protein) Reductase/metabolism , Enzyme Inhibitors/metabolism , Fatty Acid Synthases/antagonists & inhibitors , Pyrrolidines/metabolism , Pyrrolidines/pharmacology , Triazoles/metabolism , Triazoles/pharmacology , 3-Oxoacyl-(Acyl-Carrier-Protein) Reductase/chemistry , Catalytic Domain , Cell Line, Tumor , Fatty Acid Synthases/chemistry , Humans , Models, Molecular , Protein Conformation , X-Ray Diffraction
2.
Acta Crystallogr D Biol Crystallogr ; 65(Pt 5): 449-61, 2009 May.
Article in English | MEDLINE | ID: mdl-19390150

ABSTRACT

Inhibition of acetyl-CoA carboxylase (ACC) may prevent lipid-induced insulin resistance and type 2 diabetes, making the enzyme an attractive pharmaceutical target. Although the enzyme is highly conserved amongst animals, only the yeast enzyme structure is available for rational drug design. The use of biophysical assays has permitted the identification of a specific C-terminal truncation of the 826-residue human ACC2 carboxyl transferase (CT) domain that is both functionally competent to bind inhibitors and crystallizes in their presence. This C-terminal truncation led to the determination of the human ACC2 CT domain-CP-640186 complex crystal structure, which revealed distinctions from the yeast-enzyme complex. The human ACC2 CT-domain C-terminus is comprised of three intertwined alpha-helices that extend outwards from the enzyme on the opposite side to the ligand-binding site. Differences in the observed inhibitor conformation between the yeast and human structures are caused by differing residues in the binding pocket.


Subject(s)
Acetyl-CoA Carboxylase/chemistry , Acetyl-CoA Carboxylase/antagonists & inhibitors , Acetyl-CoA Carboxylase/isolation & purification , Acetyl-CoA Carboxylase/metabolism , Acetyltransferases/antagonists & inhibitors , Amino Acid Sequence , Binding Sites , Circular Dichroism , Crystallography, X-Ray , Fatty Acids/metabolism , Fluorescence Polarization , Humans , Ligands , Models, Molecular , Molecular Sequence Data , Protein Conformation , Protein Denaturation , Protein Structure, Tertiary , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/isolation & purification , Recombinant Fusion Proteins/metabolism , Saccharomyces cerevisiae Proteins/chemistry , Sequence Alignment , Sequence Homology, Amino Acid , Species Specificity , Structure-Activity Relationship
3.
Mol Cell Biol ; 23(23): 8902-12, 2003 Dec.
Article in English | MEDLINE | ID: mdl-14612427

ABSTRACT

The gene encoding p53 mediates a major tumor suppression pathway that is frequently altered in human cancers. p53 function is kept at a low level during normal cell growth and is activated in response to various cellular stresses. The MDM2 oncoprotein plays a key role in negatively regulating p53 activity by either direct repression of p53 transactivation activity in the nucleus or promotion of p53 degradation in the cytoplasm. DNA damage and oncogenic insults, the two best-characterized p53-dependent checkpoint pathways, both activate p53 through inhibition of MDM2. Here we report that the human homologue of MDM2, HDM2, binds to ribosomal protein L11. L11 binds a central region in HDM2 that is distinct from the ARF binding site. We show that the functional consequence of L11-HDM2 association, like that with ARF, results in the prevention of HDM2-mediated p53 ubiquitination and degradation, subsequently restoring p53-mediated transactivation, accumulating p21 protein levels, and inducing a p53-dependent cell cycle arrest by canceling the inhibitory function of HDM2. Interference with ribosomal biogenesis by a low concentration of actinomycin D is associated with an increased L11-HDM2 interaction and subsequent p53 stabilization. We suggest that L11 functions as a negative regulator of HDM2 and that there might exist in vivo an L11-HDM2-p53 pathway for monitoring ribosomal integrity.


Subject(s)
Nuclear Proteins , Proto-Oncogene Proteins/metabolism , Ribosomal Proteins/metabolism , Tumor Suppressor Protein p53/metabolism , Amino Acid Sequence , Cell Line, Tumor , Dactinomycin/pharmacology , Genes, p53 , HeLa Cells , Humans , Macromolecular Substances , Models, Biological , Molecular Sequence Data , Proto-Oncogene Proteins/genetics , Proto-Oncogene Proteins c-mdm2 , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Ribosomal Proteins/genetics , Ribosomes/drug effects , Ribosomes/metabolism , S Phase , Transcriptional Activation , Ubiquitin/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...