Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Health Perspect ; 105(12): 1320-5, 1997 Dec.
Article in English | MEDLINE | ID: mdl-9405328

ABSTRACT

Pfiesteria piscicida and other toxic Pfiesteria-like dinoflagellates have been implicated as a cause of fish kills in North Carolina estuaries and elsewhere. Accidental laboratory exposure of humans to P. piscicida has been reported to cause a complex syndrome including cognitive impairment. The current project was conducted to experimentally assess the possibility of cognitive effects of P. piscicida exposure in rats. Samples of water from aquaria in which P. piscicida zoospores were killing fish were frozen, a procedure that has been found to induce encystment. Thawed samples were injected into albino Sprague-Dawley rats. A significant learning impairment was documented in rats administered samples of P. piscicida that were recently frozen. Prolonged storage of Pfiesteria samples diminished the effect. No effect was seen in the recall of a previously learned task, but when the rats were called upon to learn a new task, the Pfiesteria-treated animals showed a significant learning deficit. This effect persisted up to at least 10 weeks after a single injection of Pfiesteria. The Pfiesteria-induced learning deficit did not seem to be associated with any obvious debilitation or health impairment of the exposed rats. Deficits in habituation of arousal and rearing behavior were detected using a functional observational battery. No Pfiesteria-induced effects on blood count and white cell differential or in a standard pathological screening of brain, liver, lung, kidney, and spleen tissue were seen at 2 months after exposure. These studies document a persistent learning impairment in rats after exposure to the dinoflagellate P.piscicida in otherwise physically well-appearing rats. This effect may partially model the symptoms of cognitive impairments that humans have shown after Pfiesteria exposure.


Subject(s)
Dinoflagellida , Learning Disabilities/etiology , Protozoan Infections, Animal/complications , Animals , Female , Maze Learning , Motor Activity , Protozoan Infections, Animal/blood , Rats , Rats, Sprague-Dawley
2.
Science ; 252(5006): 693-5, 1991 May 03.
Article in English | MEDLINE | ID: mdl-17746668

ABSTRACT

The rate coefficients, k(1), for the reaction of OH with CHF(2)Br have been measured using pulsed photolysis and discharge flow techniques at temperatures (T) between 233 and 432 K to be k(1), = (7.4 +/- 1.6) x 10(-13) exp[-(1300 +/- 100)/T] cubic centimeters per molecule per second. The ultraviolet absorption cross sections, sigma, of this molecule between 190 and 280 nanometers were measured at 296 K. The k(1), and sigma values were used in a one-dimensional model to obtain an atmospheric lifetime of approximately 7 years for CHF(2)Br. This lifetime is shorter by approximately factors of 10 and 2 than those for CF(3)Br and CF(2)ClBr, respectively. The ozone depletion potentials of the three compounds will reflect these lifetimes.

SELECTION OF CITATIONS
SEARCH DETAIL
...