Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Methods ; 20(2): 248-258, 2023 02.
Article in English | MEDLINE | ID: mdl-36658278

ABSTRACT

The expansion of fluorescence bioimaging toward more complex systems and geometries requires analytical tools capable of spanning widely varying timescales and length scales, cleanly separating multiple fluorescent labels and distinguishing these labels from background autofluorescence. Here we meet these challenging objectives for multispectral fluorescence microscopy, combining hyperspectral phasors and linear unmixing to create Hybrid Unmixing (HyU). HyU is efficient and robust, capable of quantitative signal separation even at low illumination levels. In dynamic imaging of developing zebrafish embryos and in mouse tissue, HyU was able to cleanly and efficiently unmix multiple fluorescent labels, even in demanding volumetric timelapse imaging settings. HyU permits high dynamic range imaging, allowing simultaneous imaging of bright exogenous labels and dim endogenous labels. This enables coincident studies of tagged components, cellular behaviors and cellular metabolism within the same specimen, providing more accurate insights into the orchestrated complexity of biological systems.


Subject(s)
Zebrafish , Animals , Mice , Microscopy, Fluorescence/methods
2.
Biomater Sci ; 9(2): 482-495, 2021 Jan 21.
Article in English | MEDLINE | ID: mdl-32812951

ABSTRACT

Providing physicians with new imaging agents to help detect cancer with better sensitivity and specificity has the potential to significantly improve patient outcomes. Development of new imaging agents could offer improved early cancer detection during routine screening or help surgeons identify tumor margins for surgical resection. In this study, we evaluate the optical properties of a colorful class of dyes and pigments that humans routinely encounter. The pigments are often used in tattoo inks and the dyes are FDA approved for the coloring of foods, drugs, and cosmetics. We characterized their absorption, fluorescence and Raman scattering properties in the hopes of identifying a new panel of dyes that offer exceptional imaging contrast. We found that some of these coloring agents, coined as "optical inks", exhibit a multitude of useful optical properties, outperforming some of the clinically approved imaging dyes on the market. The best performing optical inks (Green 8 and Orange 16) were further incorporated into liposomal nanoparticles to assess their tumor targeting and optical imaging potential. Mouse xenograft models of colorectal, cervical and lymphoma tumors were used to evaluate the newly developed nano-based imaging contrast agents. After intravenous injection, fluorescence imaging revealed significant localization of the new "optical ink" liposomal nanoparticles in all three tumor models as opposed to their neighboring healthy tissues (p < 0.05). If further developed, these coloring agents could play important roles in the clinical setting. A more sensitive imaging contrast agent could enable earlier cancer detection or help guide surgical resection of tumors, both of which have been shown to significantly improve patient survival.


Subject(s)
Neoplasms , Tattooing , Coloring Agents , Contrast Media , Humans , Ink , Optical Imaging
3.
Nanomaterials (Basel) ; 10(11)2020 Nov 12.
Article in English | MEDLINE | ID: mdl-33198113

ABSTRACT

Gold nanoparticles continue to generate interest for use in several biomedical applications. Recently, researchers have been focusing on exploiting their dual diagnostic/therapeutic theranostic capabilities. Before clinical translation can occur, regulatory agencies will require a greater understanding of their biodistribution and safety profiles post administration. Previously, the real-time identification and tracking of gold nanoparticles in free-flowing vasculature had not been possible without extrinsic labels such as fluorophores. Here, we present a label-free imaging approach to examine gold nanoparticle (AuNP) activity within the vasculature by utilizing multiphoton intravital microscopy. This method employs a commercially available multiphoton microscopy system to visualize the intrinsic luminescent signal produced by a multiphoton absorption-induced luminescence effect observed in single gold nanoparticles at frame rates necessary for capturing real-time blood flow. This is the first demonstration of visualizing unlabeled gold nanoparticles in an unperturbed vascular environment with frame rates fast enough to achieve particle tracking. Nanoparticle blood concentration curves were also evaluated by the tracking of gold nanoparticle flow in vasculature and verified against known pre-injection concentrations. Half-lives of these gold nanoparticle injections ranged between 67 and 140 s. This label-free imaging approach could provide important structural and functional information in real time to aid in the development and effective analysis of new metallic nanoparticles for various clinical applications in an unperturbed environment, while providing further insight into their complex uptake and clearance pathways.

4.
Nanomaterials (Basel) ; 8(11)2018 Nov 20.
Article in English | MEDLINE | ID: mdl-30463284

ABSTRACT

Raman spectroscopic imaging has shown great promise for improved cancer detection and localization with the use of tumor targeting surface enhanced Raman scattering (SERS) nanoparticles. With the ultrasensitive detection and multiplexing capabilities that SERS imaging has to offer, scientists have been investigating several clinical applications that could benefit from this unique imaging strategy. Recently, there has been a push to develop new image-guidance tools for surgical resection to help surgeons sensitively and specifically identify tumor margins in real time. We hypothesized that SERS nanoparticles (NPs) topically applied to breast cancer resection margins have the potential to provide real-time feedback on the presence of residual cancer in the resection margins during lumpectomy. Here, we explore the ability of SERS nanoparticles conjugated with a cluster of differentiation-47 (CD47) antibody to target breast cancer. CD47 is a cell surface receptor that has recently been shown to be overexpressed on several solid tumor types. The binding potential of our CD47-labeled SERS nanoparticles was assessed using fluorescence assisted cell sorting (FACS) on seven different human breast cancer cell lines, some of which were triple negative (negative expression of estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor-2 (HER2)). Xenograft mouse models were also used to assess the ability of our Raman imaging system to identify tumor from normal tissue. A ratiometric imaging strategy was used to quantify specific vs. nonspecific probe binding, resulting in improved tumor-to-background ratios. FACS analysis showed that CD47-labeled SERS nanoparticles bound to seven different breast cancer cell lines at levels 12-fold to 70-fold higher than isotype control-labeled nanoparticles (p < 0.01), suggesting that our CD47-targeted nanoparticles actively bind to CD47 on breast cancer cells. In a mouse xenograft model of human breast cancer, topical application of CD47-targeted nanoparticles to excised normal and cancer tissue revealed increased binding of CD47-targeted nanoparticles on tumor relative to normal adjacent tissue. The findings of this study support further investigation and suggest that SERS nanoparticles topically applied to breast cancer could guide more complete surgical resection during lumpectomy.

SELECTION OF CITATIONS
SEARCH DETAIL
...