Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Clin Transl Sci ; 11(2): 175-181, 2018 03.
Article in English | MEDLINE | ID: mdl-29351371

ABSTRACT

Although thiopurine S-methyltransferase (TPMT) genotyping to guide thiopurine dosing is common in the pediatric cancer population, limited data exist on TPMT testing implementation in diverse, multidisciplinary settings. We established TPMT testing (genotype and enzyme) with clinical decision support, provider/patient education, and pharmacist consultations in a tertiary medical center and collected data over 3 years. During this time, 834 patients underwent 873 TPMT tests (147 (17%) genotype, 726 (83%) enzyme). TPMT tests were most commonly ordered for gastroenterology, rheumatology, dermatology, and hematology/oncology patients (661 of 834 patients (79.2%); 580 outpatient vs. 293 inpatient; P < 0.0001). Thirty-nine patients had both genotype and enzyme tests (n = 2 discordant results). We observed significant differences between TPMT test use and characteristics in a diverse, multispecialty environment vs. a pediatric cancer setting, which led to unique implementation needs. As pharmacogenetic implementations expand, disseminating lessons learned in diverse, real-world environments will be important to support routine adoption.


Subject(s)
Antimetabolites, Antineoplastic/pharmacology , Methyltransferases/genetics , Neoplasms/drug therapy , Pharmacogenetics/methods , Adult , Age Factors , Antimetabolites, Antineoplastic/standards , Antimetabolites, Antineoplastic/therapeutic use , Child , Child, Preschool , Decision Support Systems, Clinical , Enzyme Assays/methods , Female , Genetic Testing/methods , Genotype , Humans , Interdisciplinary Communication , Male , Methyltransferases/metabolism , Middle Aged , Neoplasms/genetics , Patient Education as Topic , Pharmacists , Phenotype , Polymorphism, Genetic , Practice Guidelines as Topic , Precision Medicine/methods , Tertiary Care Centers
2.
Am J Pharm Educ ; 80(7): 122, 2016 Sep 25.
Article in English | MEDLINE | ID: mdl-27756930

ABSTRACT

Objective. To evaluate the impact of personal genotyping and a novel educational approach on student attitudes, knowledge, and beliefs regarding pharmacogenomics and genomic medicine. Methods. Two online elective courses (pharmacogenomics and genomic medicine) were offered to student pharmacists at the University of Florida using a flipped-classroom, patient-centered teaching approach. In the pharmacogenomics course, students could be genotyped and apply results to patient cases. Results. Thirty-four and 19 student pharmacists completed the pharmacogenomics and genomic medicine courses, respectively, and 100% of eligible students (n=34) underwent genotyping. Student knowledge improved after the courses. Seventy-four percent (n=25) of students reported better understanding of pharmacogenomics based on having undergone genotyping. Conclusions. Completion of a novel pharmacogenomics elective course sequence that incorporated personal genotyping and genomic medicine was associated with increased student pharmacist knowledge and improved clinical confidence with pharmacogenomics.


Subject(s)
Genotype , Learning , Pharmacogenetics/education , Students, Pharmacy , Adult , Cytochrome P-450 Enzyme System/genetics , Education, Pharmacy , Educational Measurement , Female , Health Knowledge, Attitudes, Practice , Humans , Internet , Male , Precision Medicine , Surveys and Questionnaires , Teaching , Young Adult
3.
Am J Med Genet C Semin Med Genet ; 166C(1): 56-67, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24616371

ABSTRACT

Current challenges exist to widespread clinical implementation of genomic medicine and pharmacogenetics. The University of Florida (UF) Health Personalized Medicine Program (PMP) is a pharmacist-led, multidisciplinary initiative created in 2011 within the UF Clinical Translational Science Institute. Initial efforts focused on pharmacogenetics, with long-term goals to include expansion to disease-risk prediction and disease stratification. Herein we describe the processes for development of the program, the challenges that were encountered and the clinical acceptance by clinicians of the genomic medicine implementation. The initial clinical implementation of the UF PMP began in June 2012 and targeted clopidogrel use and the CYP2C19 genotype in patients undergoing left heart catheterization and percutaneous-coronary intervention (PCI). After 1 year, 1,097 patients undergoing left heart catheterization were genotyped preemptively, and 291 of those underwent subsequent PCI. Genotype results were reported to the medical record for 100% of genotyped patients. Eighty patients who underwent PCI had an actionable genotype, with drug therapy changes implemented in 56 individuals. Average turnaround time from blood draw to genotype result entry in the medical record was 3.5 business days. Seven different third party payors, including Medicare, reimbursed for the test during the first month of billing, with an 85% reimbursement rate for outpatient claims that were submitted in the first month. These data highlight multiple levels of success in clinical implementation of genomic medicine.


Subject(s)
Academic Medical Centers/methods , Drug Therapy/methods , Medical Informatics/methods , Pharmacogenetics/methods , Practice Patterns, Physicians'/statistics & numerical data , Program Development/methods , Academic Medical Centers/trends , Electronic Health Records , Florida , Genotype , Humans , Percutaneous Coronary Intervention/statistics & numerical data , Pharmacogenetics/trends
4.
Lancet ; 382(9894): 790-6, 2013 Aug 31.
Article in English | MEDLINE | ID: mdl-23755828

ABSTRACT

BACKGROUND: VKORC1 and CYP2C9 are important contributors to warfarin dose variability, but explain less variability for individuals of African descent than for those of European or Asian descent. We aimed to identify additional variants contributing to warfarin dose requirements in African Americans. METHODS: We did a genome-wide association study of discovery and replication cohorts. Samples from African-American adults (aged ≥18 years) who were taking a stable maintenance dose of warfarin were obtained at International Warfarin Pharmacogenetics Consortium (IWPC) sites and the University of Alabama at Birmingham (Birmingham, AL, USA). Patients enrolled at IWPC sites but who were not used for discovery made up the independent replication cohort. All participants were genotyped. We did a stepwise conditional analysis, conditioning first for VKORC1 -1639G→A, followed by the composite genotype of CYP2C9*2 and CYP2C9*3. We prespecified a genome-wide significance threshold of p<5×10(-8) in the discovery cohort and p<0·0038 in the replication cohort. FINDINGS: The discovery cohort contained 533 participants and the replication cohort 432 participants. After the prespecified conditioning in the discovery cohort, we identified an association between a novel single nucleotide polymorphism in the CYP2C cluster on chromosome 10 (rs12777823) and warfarin dose requirement that reached genome-wide significance (p=1·51×10(-8)). This association was confirmed in the replication cohort (p=5·04×10(-5)); analysis of the two cohorts together produced a p value of 4·5×10(-12). Individuals heterozygous for the rs12777823 A allele need a dose reduction of 6·92 mg/week and those homozygous 9·34 mg/week. Regression analysis showed that the inclusion of rs12777823 significantly improves warfarin dose variability explained by the IWPC dosing algorithm (21% relative improvement). INTERPRETATION: A novel CYP2C single nucleotide polymorphism exerts a clinically relevant effect on warfarin dose in African Americans, independent of CYP2C9*2 and CYP2C9*3. Incorporation of this variant into pharmacogenetic dosing algorithms could improve warfarin dose prediction in this population. FUNDING: National Institutes of Health, American Heart Association, Howard Hughes Medical Institute, Wisconsin Network for Health Research, and the Wellcome Trust.


Subject(s)
Anticoagulants/administration & dosage , Aryl Hydrocarbon Hydroxylases/genetics , Black or African American/genetics , Polymorphism, Single Nucleotide/genetics , Warfarin/administration & dosage , Alleles , Anticoagulants/pharmacokinetics , Cytochrome P-450 CYP2C9 , Female , Genome-Wide Association Study , Genotype , Humans , Male , Mixed Function Oxygenases/genetics , Vitamin K Epoxide Reductases , Warfarin/pharmacokinetics
SELECTION OF CITATIONS
SEARCH DETAIL
...