Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Materials (Basel) ; 13(22)2020 Nov 12.
Article in English | MEDLINE | ID: mdl-33198424

ABSTRACT

Magneto-optic (MO) imaging and sensing are at present the most developed practical applications of thin-film MO garnet materials. However, in order to improve sensitivity for a range of established and forward-looking applications, the technology and component-related advances are still necessary. These improvements are expected to originate from new material system development. We propose a set of technological modifications for the RF-magnetron sputtering deposition and crystallization annealing of magneto-optic bismuth-substituted iron-garnet films and investigate the improved material properties. Results show that standard crystallization annealing for the as-deposited ultrathin (sputtered 10 nm thick, amorphous phase) films resulted in more than a factor of two loss in the magneto-optical activity of the films in the visible spectral region, compared to the liquid-phase grown epitaxial films. Results also show that an additional 10 nm-thick metal-oxide (Bi2O3) protective layer above the amorphous film results in ~2.7 times increase in the magneto-optical quality of crystallized iron-garnet films. On the other hand, the effects of post-deposition oxygen (O2) plasma treatment on the magneto-optical (MO) properties of Bismuth substituted iron garnet thin film materials are investigated. Results show that in the visible part of the electromagnetic spectrum (at 532 nm), the O2 treated (up to 3 min) garnet films retain higher specific Faraday rotation and figures of merit compared to non-treated garnet films.

2.
Orig Life Evol Biosph ; 38(2): 155-63, 2008 Apr.
Article in English | MEDLINE | ID: mdl-18302005

ABSTRACT

The first results of the RAdiation Mechanism of Biomolecular ASymmetry (RAMBAS) experiment on investigation of the radiation mechanism of the influence on chiral molecules, as a factor leading to origination of chiral asymmetry are presented. It was found that irradiation of simple achiral materials by a flux of electrons from radioactive source initiated the synthesis of amino acids, and it resulted in asymmetric degradation and chiral asymmetry in a racemic mixture of amino acids. The results obtained can be important for the solution of the origin-of-life and biological homochirality problems.


Subject(s)
Amino Acids/chemistry , Origin of Life , Circular Dichroism , Protons , Radiation, Ionizing , Stereoisomerism
SELECTION OF CITATIONS
SEARCH DETAIL