Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Med Imaging (Bellingham) ; 11(3): 034505, 2024 May.
Article in English | MEDLINE | ID: mdl-38840982

ABSTRACT

Purpose: The limited volume of medical training data remains one of the leading challenges for machine learning for diagnostic applications. Object detectors that identify and localize pathologies require training with a large volume of labeled images, which are often expensive and time-consuming to curate. To reduce this challenge, we present a method to support distant supervision of object detectors through generation of synthetic pathology-present labeled images. Approach: Our method employs the previously proposed cyclic generative adversarial network (cycleGAN) with two key innovations: (1) use of "near-pair" pathology-present regions and pathology-absent regions from similar locations in the same subject for training and (2) the addition of a realism metric (Fréchet inception distance) to the generator loss term. We trained and tested this method with 2800 fracture-present and 2800 fracture-absent image patches from 704 unique pediatric chest radiographs. The trained model was then used to generate synthetic pathology-present images with exact knowledge of location (labels) of the pathology. These synthetic images provided an augmented training set for an object detector. Results: In an observer study, four pediatric radiologists used a five-point Likert scale indicating the likelihood of a real fracture (1 = definitely not a fracture and 5 = definitely a fracture) to grade a set of real fracture-absent, real fracture-present, and synthetic fracture-present images. The real fracture-absent images scored 1.7±1.0, real fracture-present images 4.1±1.2, and synthetic fracture-present images 2.5±1.2. An object detector model (YOLOv5) trained on a mix of 500 real and 500 synthetic radiographs performed with a recall of 0.57±0.05 and an F2 score of 0.59±0.05. In comparison, when trained on only 500 real radiographs, the recall and F2 score were 0.49±0.06 and 0.53±0.06, respectively. Conclusions: Our proposed method generates visually realistic pathology and that provided improved object detector performance for the task of rib fracture detection.

2.
Sci Rep ; 14(1): 8372, 2024 04 10.
Article in English | MEDLINE | ID: mdl-38600311

ABSTRACT

Rib fractures are highly predictive of non-accidental trauma in children under 3 years old. Rib fracture detection in pediatric radiographs is challenging because fractures can be obliquely oriented to the imaging detector, obfuscated by other structures, incomplete, and non-displaced. Prior studies have shown up to two-thirds of rib fractures may be missed during initial interpretation. In this paper, we implemented methods for improving the sensitivity (i.e. recall) performance for detecting and localizing rib fractures in pediatric chest radiographs to help augment performance of radiology interpretation. These methods adapted two convolutional neural network (CNN) architectures, RetinaNet and YOLOv5, and our previously proposed decision scheme, "avalanche decision", that dynamically reduces the acceptance threshold for proposed regions in each image. Additionally, we present contributions of using multiple image pre-processing and model ensembling techniques. Using a custom dataset of 1109 pediatric chest radiographs manually labeled by seven pediatric radiologists, we performed 10-fold cross-validation and reported detection performance using several metrics, including F2 score which summarizes precision and recall for high-sensitivity tasks. Our best performing model used three ensembled YOLOv5 models with varied input processing and an avalanche decision scheme, achieving an F2 score of 0.725 ± 0.012. Expert inter-reader performance yielded an F2 score of 0.732. Results demonstrate that our combination of sensitivity-driving methods provides object detector performance approaching the capabilities of expert human readers, suggesting that these methods may provide a viable approach to identify all rib fractures.


Subject(s)
Radiology , Rib Fractures , Humans , Child , Child, Preschool , Rib Fractures/diagnostic imaging , Rib Fractures/etiology , Radiography , Neural Networks, Computer , Radiologists , Retrospective Studies , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...