Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Pharmacol Rep ; 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39007946

ABSTRACT

BACKGROUND: The study aimed to evaluate the therapeutic potential of fourteen newly synthesized bisphosphonates by assessing their bioavailability, bone affinity, and cytotoxicity. These bisphosphonates included a series of aminomethylenebisphosphonates and standard compounds such as risedronate and tiludronate. METHODS: Drug permeability was determined using Parallel Artificial Membrane Permeability Assays (PAMPA), while bone affinity was assessed by sorption on hydroxyapatite. Bacterial cell response to the bisphosphonates was also examined using Lactobacillus paracasei cells as a model. RESULTS: Several tested compounds, including BP3 to BP8 and BP11, which feature substituents in the pyridine ring such as methyl groups, iodine, bromine, chlorine, or hydroxyl groups, demonstrated potentially more beneficial therapeutic properties than commercially used bisphosphonates. These compounds showed stronger bone affinity and higher gastrointestinal absorption with comparable or lower cytotoxic effects. Specifically, BP11 exhibited the highest bone affinity, while BP8 and BP11 showed the greatest permeability. CONCLUSIONS: The findings suggest that BP3 BP8, and BP11 are promising candidates for further research. These results highlight the importance of comprehensively evaluating bisphosphonates' therapeutic properties to identify effective treatments for osteoporosis and other bone diseases.

2.
Sci Total Environ ; 802: 149917, 2022 Jan 01.
Article in English | MEDLINE | ID: mdl-34525765

ABSTRACT

The increasing consumption of azole antifungal agents leads to their uncontrolled release into the environment. Therefore, it is crucial to remove their residues from natural ecosystems. This study aimed to examine the biological and chemical degradation of four typical azole fungicides: fluconazole (Fc), clotrimazole (Cl), climbazole (Cb), and epoxiconazole (Ep). The biodegradation was investigated using activated sludge and two novel Gram-negative bacterial strains. The chemical degradation experiments aimed to assess the efficiency of fungicides removal through UV treatment, the Fenton reaction, and a combination of these methods. Transformation products of Cb, Ep, and Cl photocatalytic removal were identified by mass spectrometry. In addition, the AlamarBlue® Assay and the MTT Assay allowed careful evaluation of the toxicity of azole derivatives and their transformation products towards newly isolated strains, Stenotrophomonas maltophilia AsPCl2.3 and Pseudomonas monteilii LB2. Among all azole fungicides, Cb was the most susceptible to biological removal while Fc, Ep, and Cl were basically resistant to biodegradation. Cl and Ep showed a significant biosorption on the activated sludge. Under optimized photolysis conditions, the removal efficiency of Cl, Cb, and Ep was significantly higher than that of biodegradation. The Fenton reaction supported by the UV-irradiation offered the best results of fungicides elimination. After 1 min of the experiment, Cl was almost completely removed while Cb and Ep removal rates reached an average of 60%. The proposed main degradation route of azole fungicides during UV-irradiation includes halogen atoms substitution by hydroxyl moieties. The final degradation product was imidazole or triazole. Azole fungicides and their transformation products differently affected the metabolic activity of Gram-negative bacteria. Cl and Cb intermediates showed lower toxicity than parent compounds. The findings help better understand the environmental impact of azole fungicides, their degradation, and toxicity. They also stress the need for reducing their uncontrolled release to the environment.


Subject(s)
Fungicides, Industrial , Water Pollutants, Chemical , Azoles/toxicity , Ecosystem , Fungicides, Industrial/analysis , Fungicides, Industrial/toxicity , Pseudomonas , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/toxicity
3.
Chemosphere ; 271: 129818, 2021 May.
Article in English | MEDLINE | ID: mdl-33736217

ABSTRACT

The use of carbohydrates, as a part of surface-active compounds, has been studied due to their biodegradability and nontoxic profile. A series of alkyl glycosides containing d-lyxose and l-rhamnose with alkyl chains of 8-12 carbon atoms were investigated. The effects of structural variations on their physico-chemical and biological properties have been evaluated for a detailed understanding of their properties. Alkyl glycosides were tested on their toxicity against bacterial cells of the genus Pseudomonas (MTT assay), microbiological adhesion to hydrocarbons (MATH assay), cell surface hydrophobicity (Congo red assay), cell membrane permeability (crystal violet assay), and bacterial biofilm formation. Furthermore, their antifungal activity against two pathogenic microorganisms Candida albicans and Aspergillus niger was investigated using the disc diffusion method. Toxicological studies revealed that compounds could reduce the metabolic activity of bacterial cells only moderately but they increased the hydrophobicity of cell surface in Pseudomonas strains. In addition, alkyl glycosides changed the permeability of the cell membranes to the level of 30-40% for this strain. The compounds with an even number of carbon atoms in their alkyl chain promoted stronger bacterial biofilm formation on the glass surface. All studied derivatives demonstrated very strong antifungal activity against fungus A. niger but very small effect against C. albicans. Overall, the results showed that long-chain alkyl glycosides could be considered as inexpensive, biocompatible, nontoxic agents, and serve for the surface design to avoid bacterial adhesion as an alternative solution to antibiotic treatment.


Subject(s)
Anti-Infective Agents , Surface-Active Agents , Anti-Bacterial Agents/toxicity , Anti-Infective Agents/toxicity , Antifungal Agents/toxicity , Candida albicans , Microbial Sensitivity Tests , Surface-Active Agents/toxicity
4.
J Hazard Mater ; 407: 124352, 2021 04 05.
Article in English | MEDLINE | ID: mdl-33160784

ABSTRACT

Antibiotic residues in the environment may negatively affect biological communities in the natural ecosystems. However, their influence on environmental bacterial strains has not been thoroughly investigated. In this study, two representatives of 5-nitrofuran antibiotics (nitrofurantoin and furaltadone) were investigated in terms of their long-term influence on the cell envelopes of newly isolated environmental bacterial strains (Sphingobacterium caeni FTD2, Achromobacter xylosoxidans NFZ2 and Pseudomonas hibiscicola FZD2). A 12-month exposure of bacterial cells to nitrofurans at a concentration of 20 mg L-1 induced changes in the cell structure and texture (bacteria under stress conditions showed a loss of their original shape and seemed to be vastly inflated, the cells increased average surface roughness after exposure to NFT and FTD, respectively). AFM observations allowed the calculation of the bacterial cell nanomechanical properties. Significant increase in adhesion energy of bacteria after prolonged contact with nitrofurantoin was demonstrated. Changes in the permeability of bacterial membrane, fatty acids' composition and bacterial cell surface hydrophobicity were determined. Despite visible bacterial adaptation to nitrofurans, prolonged presence of pharmaceuticals in the environment has led to significant alterations in the cells' structures which was particularly visible in P. hibiscicola.


Subject(s)
Ecosystem , Nitrofurans , Bacteria , Microscopy, Atomic Force , Sphingobacterium , Spores, Bacterial , Stenotrophomonas , Surface Properties
5.
Molecules ; 25(15)2020 Jul 23.
Article in English | MEDLINE | ID: mdl-32717971

ABSTRACT

Azole antifungal molecules are broadly used as active ingredients in various products, such as pharmaceuticals and pesticides. This promotes their release into the natural environment. The detailed mechanism of their influence on the biotic components of natural ecosystems remains unexplored. Our research aimed to examine the response of Ochrobactrum anthropi AspCl2.2 to the presence of four azole antifungal agents (clotrimazole, fluconazole, climbazole, epoxiconazole). The experiments performed include analysis of the cell metabolic activity, cell membrane permeability, total glutathione level and activity of glutathione S-transferases. These studies allowed for the evaluation of the cells' oxidative stress response to the presence of azole antifungals. Moreover, changes in the nanomechanical surface properties, including adhesive and elastic features of the cells, were investigated using atomic force microscopy (AFM) and spectrophotometric methods. The results indicate that the azoles promote bacterial oxidative stress. The strongest differences were noted for the cells cultivated with fluconazole. The least toxic effect has been attributed to climbazole. AFM observations unraveled molecular details of bacterial cell texture, structure and surface nanomechanical properties. Antifungals promote the nanoscale modification of the bacterial cell wall. The results presented provided a significant insight into the strategies used by environmental bacterial cells to survive exposures to toxic azole antifungal agents.


Subject(s)
Anti-Bacterial Agents/pharmacology , Azoles/pharmacology , Glutathione/metabolism , Ochrobactrum anthropi/drug effects , Anti-Bacterial Agents/chemistry , Azoles/chemistry , Bacterial Adhesion/drug effects , Biomechanical Phenomena , Cell Membrane Permeability/drug effects , Clotrimazole/chemistry , Clotrimazole/pharmacology , Epoxy Compounds/chemistry , Epoxy Compounds/pharmacology , Fluconazole/chemistry , Fluconazole/pharmacology , Hydrophobic and Hydrophilic Interactions , Imidazoles/chemistry , Imidazoles/pharmacology , Microbial Sensitivity Tests , Microscopy, Atomic Force , Nanoparticles , Ochrobactrum anthropi/metabolism , Ochrobactrum anthropi/physiology , Surface Properties , Triazoles/chemistry , Triazoles/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...