Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Aesthetic Plast Surg ; 43(1): 147-154, 2019 02.
Article in English | MEDLINE | ID: mdl-30483937

ABSTRACT

BACKGROUND: Photobiomodulation is widely studied for its potential benefits in the wound healing process. Numerous scientific studies have highlighted its effect on various phases of wound repair, but clinical validations are few. This comparative trial aims to evaluate the influence of photobiomodulation on the post-abdominoplasty healing process. METHODS: Seventeen Caucasian women (aged 18-55) who underwent an abdominoplasty were enrolled in this double-blinded, controlled clinical trial. The postoperative scars were divided into two areas; the right side of the scars was treated with ten sessions of photobiomodulation (consisting in three types of wavelengths). The other part of the scars was used as control and did not receive any additional treatment. Clinical assessments of both parts of the scars were scheduled at 1, 6 and 12 months postoperative. RESULTS: Within six months following surgery, significantly improved quality of the scars on the treated side compared with the untreated side was reported by patients and experienced professionals according to Vancouver Scar Scale, Patient and Observer Scar Assessment Scale (p < 0.05) and standardized photographs (p < 0.05). At 1 year of follow-up, patients observed no differences between the treated and untreated sides of the scars. This suggests that photobiomodulation appears to play an early role in the wound healing process, accelerating the first stages of cicatrization. CONCLUSION: This study statistically validates the positive impact of photobiomodulation treatment on the first stages of the postoperative healing process. Carried out on Caucasians participants only, this study should, however, be performed on a more heterogeneous population to definitively confirm these effects on an international population. CLINICAL TRIAL REGISTRY: Registro Brasileiro de ensaios clínicos: http://www.ensaiosclinicos.gov.br , Trial RBR-49PK78. LEVEL OF EVIDENCE II: This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .


Subject(s)
Abdominoplasty/methods , Cicatrix/therapy , Immunologic Factors/therapeutic use , Phototherapy/methods , Wound Healing/physiology , Abdominoplasty/adverse effects , Adolescent , Adult , Brazil , Cicatrix/etiology , Cicatrix/pathology , Double-Blind Method , Esthetics , Female , Follow-Up Studies , Hospitals, Public , Humans , Middle Aged , Observer Variation , Phototherapy/instrumentation , Postoperative Care/methods , Reference Values , Treatment Outcome
2.
J Biophotonics ; 8(6): 480-8, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25077453

ABSTRACT

The effect of a 645 nm Light Emitting Diode (LED) light irradiation on the neurite growth velocity of adult Dorsal Root Ganglion (DRG) neurons with peripheral axon injury 4-10 days before plating and without previous injury was investigated. The real amount of light reaching the neurons was calculated by taking into account the optical characteristics of the light source and of media in the light path. The knowledge of these parameters is essential to be able to compare results of the literature and a way to reduce inconsistencies. We found that 4 min irradiation of a mean irradiance of 11.3 mW/cm(2) (corresponding to an actual irradiance reaching the neurons of 83 mW/cm(2)) induced a 1.6-fold neurite growth acceleration on non-injured neurons and on axotomized neurons. Although the axotomized neurons were naturally already in a rapid regeneration process, an enhancement was found to occur while irradiating with the LED light, which may be promising for therapy applications. Dorsal Root Ganglion neurons (A) without previous injury and (B) subjected to a conditioning injury.


Subject(s)
Ganglia, Spinal/radiation effects , Low-Level Light Therapy/methods , Neurites/radiation effects , Sciatic Nerve/injuries , Sensory Receptor Cells/radiation effects , Animals , Cells, Cultured , Disease Models, Animal , Ganglia, Spinal/pathology , Ganglia, Spinal/physiopathology , Low-Level Light Therapy/instrumentation , Lumbar Vertebrae , Mice , Microscopy , Neurites/pathology , Neurites/physiology , Random Allocation , Sensory Receptor Cells/pathology , Sensory Receptor Cells/physiology , Spectrum Analysis , Video Recording
SELECTION OF CITATIONS
SEARCH DETAIL
...