Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 74
Filter
Add more filters










Publication year range
1.
Nutrients ; 16(7)2024 Apr 06.
Article in English | MEDLINE | ID: mdl-38613111

ABSTRACT

Fibromyalgia (FM) is a multidimensional disorder in which intense chronic pain is accompanied by a variety of psychophysical symptoms that impose a burden on the patients' quality of life. Despite the efforts and the recent advancement in research, FM pathogenesis and effective treatment remain unknown. Recently, the possible role of dietary patterns and/or components has been gaining attention. The current study aimed to investigate a potential correlation between adherence to the Mediterranean diet (MedDiet) and FM severity in a sample of Italian FM patients. An online survey was designed, composed of customized questions and validated questionnaires with the aim of investigating the intensity and type of pain, the presence of other psychophysical symptoms, the overall impact of FM, general food and lifestyle habits, and adherence to the MedDiet. The collected responses were analyzed for descriptive statistics, linear regression, and propensity score analyses. The results show that, despite considerable use of pharmaceuticals and supplements, FM participants suffered from a high-severity grade disease. However, those with good adherence to the MedDiet experienced a lower pain intensity and overall FM impact. A propensity score analysis indicates a positive influence of the MedDiet against FM severity, thus unveiling the need for well-designed intervention studies to evaluate the therapeutic potential of different dietary patterns.


Subject(s)
Chronic Pain , Diet, Mediterranean , Fibromyalgia , Humans , Fibromyalgia/therapy , Quality of Life , Patient Acuity , Dietary Supplements
2.
Sci Rep ; 13(1): 15604, 2023 09 20.
Article in English | MEDLINE | ID: mdl-37730890

ABSTRACT

Understanding the brain functioning is essential for governing brain processes with the aim of managing pathological network dysfunctions. Due to the morphological and biochemical complexity of the central nervous system, the development of general models with predictive power must start from in vitro brain network engineering. In the present work, we realized a micro-electrode array (MEA)-based in vitro brain network and studied its emerging dynamical properties. We obtained four-neuron-clusters (4N) assemblies by plating rat embryo cortical neurons on 60-electrode MEA with cross-shaped polymeric masks and compared the emerging dynamics with those of sister single networks (1N). Both 1N and 4N assemblies exhibited spontaneous electrical activity characterized by spiking and bursting signals up to global activation by means of network bursts. Data revealed distinct patterns of network activity with differences between 1 and 4N. Rhythmic network bursts and dominant initiator clusters suggested pacemaker activities in both assembly types, but the propagation of activation sequences was statistically influenced by the assembly topology. We proved that this rhythmic activity was ivabradine sensitive, suggesting the involvement of hyperpolarization-activated cyclic nucleotide-gated (HCN) channels, and propagated across the real clusters of 4N, or corresponding virtual clusters of 1N, with dominant initiator clusters, and nonrandom cluster activation sequences. The occurrence of nonrandom series of identical activation sequences in 4N revealed processes possibly ascribable to neuroplasticity. Hence, our multi-network dissociated cortical assemblies suggest the relevance of pacemaker neurons as essential elements for generating brain network electrophysiological patterns; indeed, such evidence should be considered in the development of computational models for envisaging network behavior both in physiological and pathological conditions.


Subject(s)
Pacemaker, Artificial , Animals , Rats , Brain , Central Nervous System , Electrodes , Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels
3.
Molecules ; 28(10)2023 May 19.
Article in English | MEDLINE | ID: mdl-37241930

ABSTRACT

The nutritional and health properties of algae make them perfect functional ingredients for nutraceutical and cosmeceutical applications. In this study, the Phaeodactylum tricornutum Bohlin (Phaeodactylaceae), a pleiomorphic diatom commonly found in marine ecosystems, was investigated. The in vitro culture conditions used favoured the fusiform morphotype, characterized by a high accumulation of neutral lipids, as detected by fluorescence microscopy after BODIPY staining. These data were confirmed by HPLC-DAD-APCI-MS/MS analyses carried out on the ethanolic extract (PTE), which showed a high content of xanthophylls (98.99%), and in particular of fucoxanthin (Fx, 6.67 g/100 g PTE). The antioxidant activity (ORAC, FRAP, TEAC and ß-carotene bleaching) and photostability of PTE and Fx against UVA and UVB rays were firstly evaluated by in vitro cell-free assays. After this, phototoxicity and photoprotective studies were carried out on in vitro reconstructed human epidermidis models. Results demonstrated that PTE (0.1% Fx) and 0.1% Fx, both photostable, significantly (p < 0.05) reduce oxidative and inflammatory stress markers (ROS, NO and IL-1α), as well as cytotoxicity and sunburn cells induced by UVA and UVB doses simulating the solar radiation, with an excellent safety profile. However, PTE proved to be more effective than Fx, suggesting its effective and safe use in broad-spectrum sunscreens.


Subject(s)
Cosmeceuticals , Diatoms , Humans , Cosmeceuticals/pharmacology , Tandem Mass Spectrometry , Ecosystem , Xanthophylls/pharmacology , Lutein/pharmacology , Epidermis
4.
Int J Mol Sci ; 24(6)2023 Mar 14.
Article in English | MEDLINE | ID: mdl-36982606

ABSTRACT

Citrus lumia Risso and Poit. 'Pyriformis' are horticultural varieties of Citrus lumia Risso. The fruit is very fragrant and pear-shaped, with a bitter juice, a floral flavor, and a very thick rind. The flavedo shows enlarged (0.74 × 1.16 mm), spherical and ellipsoidal secretory cavities containing the essential oil (EO), visible using light microscopy, and more evident using scanning electron microscopy. The GC-FID and GC-MS analyses of the EO showed a phytochemical profile characterized by the predominance of D-limonene (93.67%). The EO showed interesting antioxidant and anti-inflammatory activities (IC50 0.07-2.06 mg/mL), as evaluated by the in vitro cell-free enzymatic and non-enzymatic assays. To evaluate the effect on the neuronal functional activity, the embryonic cortical neuronal networks grown on multi-electrode array chips were exposed to non-cytotoxic concentrations of the EO (5-200 µg/mL). The spontaneous neuronal activity was recorded and the mean firing rate, mean burst rate, percentage of spikes in a burst, mean burst durations and inter-spike intervals within a burst parameter were calculated. The EO induced strong and concentration-dependent neuroinhibitory effects, with IC50 ranging between 11.4-31.1 µg/mL. Furthermore, it showed an acetylcholinesterase inhibitory activity (IC50 0.19 mg/mL), which is promising for controlling some of the key symptoms of neurodegenerative diseases such as memory and cognitive concerns.


Subject(s)
Citrus , Oils, Volatile , Oils, Volatile/pharmacology , Oils, Volatile/chemistry , Antioxidants/pharmacology , Antioxidants/chemistry , Citrus/chemistry , Acetylcholinesterase , Anti-Inflammatory Agents/pharmacology
5.
Biomedicines ; 11(2)2023 Feb 18.
Article in English | MEDLINE | ID: mdl-36831148

ABSTRACT

Fibromyalgia (FM) is a chronic pain disorder with unclear pathophysiological mechanisms, which leads to challenges in patient management. In addition to pain, the disorder presents with a broad range of symptoms, such as sleep disruption, chronic fatigue, brain fog, depression, muscle stiffness, and migraine. FM has a considerable female prevalence, and it has been shown that symptoms are influenced by the menstrual cycle and periods of significant hormonal and immunological changes. There is increasing evidence that females with FM experience an aggravation of symptoms in pregnancy, particularly during the third trimester and after childbirth. In this perspective paper, we focus on the neuro-endocrine interactions that occur between progesterone, allopregnanolone, and cortisol during pregnancy, and propose that they align with our previously proposed model of FM pathogenesis based on GABAergic "weakening" in a thalamocortical neural loop system. Based on our hypothesis, we introduce the possibility of utilizing transcranial direct current stimulation (tDCS) as a non-invasive treatment potentially capable of exerting sex-specific effects on FM patients.

6.
Curr Med Chem ; 30(19): 2121-2140, 2023.
Article in English | MEDLINE | ID: mdl-35209815

ABSTRACT

INTRODUCTION: This review concerns three species of berries, namely the high- -latitude cloudberry (Rubus chamaemorus) and arctic bramble (Rubus arcticus), and the high-altitude yellow raspberry (Rubus ellipticus). These plants are mostly exploited on a local basis as food or traditional remedies but could have a wider usage as nutraceuticals due to their richness in ellagitannins (ETs) and other phenolic compounds. ETs are hexahydroxydiphenoyl esters of carbohydrates and the largest group of hydrolysable tannins. They are distinctly antioxidant and bioactive compounds, and therefore, are considered as majorly responsible for the biological properties of ET-rich berries. The health benefits of ETs are mainly due to the release of ellagic acid and to their metabolic transformation by the gut microbiota into urolithins, and include, among others, anti-inflammatory, antiviral, anti-bacterial, and anticancer actions. METHODS: Based on the literature searches in the Web of Science, Scopus, and PubMed databases, ethnobotanical, pharmaceutical, medicinal, and nutritional knowledge concerning the three berry species was covered. This includes empirical use of traditional preparations and experimental studies with various extracts and fractions from fruits and other plant portions, covering in vitro, preclinical, and clinical research. RESULTS: The data reveal a wide spectrum of potential uses in health care, providing in some cases an experimental confirmation of traditional uses. CONCLUSION: The examined berry species can act as nutraceutical foods, having positive effects on regular consumers but could also be exploited in more technological ways to produce food complements from ET-rich extracts.


Subject(s)
Fruit , Hydrolyzable Tannins , Plant Extracts/chemistry , Plant Extracts/pharmacology , Dietary Supplements , Altitude
7.
Math Med Biol ; 40(1): 96-110, 2023 03 13.
Article in English | MEDLINE | ID: mdl-36469499

ABSTRACT

Mal de Debarquement Syndrome (MdDS) is a puzzling central vestibular disorder characterized by a long-lasting perception of oscillatory postural instability that may occur after sea travels or flights. We have postulated that MdDS originates from the post-disembarking persistence of an adaptive internal oscillator consisting of a loop system, involving the right and left vestibular nuclei, and the Purkinje cells of the right and left flocculonodular cerebellar cortex, connected by GABAergic and glutamatergic fibers. We have formulated here a mathematical model of the vestibulo-cerebellar loop system and carried out a computational analysis based on a set of differential equations describing the interactions among the loop elements and containing Hill functions that model input-output firing rates relationships among neurons. The analysis indicates that the system acquires a spontaneous and permanent oscillatory behavior for a decrease of threshold and an increase of sensitivity in neuronal input-output responses. These results suggest a role for synaptic plasticity in MdDS pathophysiology, thus reinforcing our previous hypothesis that MdDS may be the result of excessive synaptic plasticity acting on the vestibulo-cerebellar network during its entraining to an oscillatory environment. Hence, our study points to neuroendocrine pathways that lead to increased synaptic response as possible new therapeutic targets for the clinical treatment of the disorder.


Subject(s)
Travel-Related Illness , Travel , Humans
8.
F1000Res ; 11: 906, 2022.
Article in English | MEDLINE | ID: mdl-36226044

ABSTRACT

Despite intensive investigations numerous diseases remain etiologically puzzling and recalcitrant to treatments. A hypothesis is proposed here assuming that these difficulties are due to an unsuitable approach to the mechanisms of life, which is subjugated by an apparent complexity and fails to grasp the uniformity that lays behind. The stability of metabolism, despite the enormous complex of chemical reactions, suggests that reciprocal control is a prerequisite of life. Negative feedback loops have been known for a long time to maintain homeostasis, while more recently, different life processes involved in transitions or changes have been modeled by positive loops giving rise to bistable switches, also including various diseases. The present hypothesis makes a generalization, by assuming that any functional element of a biological system is involved in a positive or a negative feedback loop. Consequently, the hypothesis holds that the starting mechanism of any disease that affects a healthy human can be conceptually reduced to a bistable or multistationary loop system, thus providing a unifying model leading to the discovery of critical therapeutic targets.


Subject(s)
Homeostasis , Humans
9.
Healthcare (Basel) ; 10(10)2022 Oct 09.
Article in English | MEDLINE | ID: mdl-36292422

ABSTRACT

Fibromyalgia (FM) is a chronic pain syndrome with an unclear etiology. In addition to pain, FM patients suffer from a diverse array of symptoms and comorbidities, encompassing fatigue, cognitive dysfunction, mood disorders, sleep deprivation, and dizziness. Due to the complexity of FM, the diagnosis and treatment of it are highly challenging. The aim of the present work was to investigate some clinical and psychological characteristics of FM patients, and to uncover possible correlations with pharmacological and non-pharmacological therapies. We conducted a cross-sectional, questionnaire-based study aimed at evaluating pain, psychological traits, and the self-perceived effectiveness of pharmacological and non-pharmacological treatments in an Italian population of FM patients. Descriptive statistics, correlation, and inference analyses were performed. We found a prevalence of a neuropathic/nociplastic type of pain, which correlated with psychological traits such as anxiety, low mood, psychophysical discomfort, and the inability to relax. The pain type and psychological traits proved to play a role in determining the self-perceived effectiveness of therapeutic interventions. Patients revealed a better response to non-pharmacological therapies, particularly dietary interventions, relaxation techniques, and psychotherapy rather than pharmacological interventions. The sum of our data indicates that for better outcomes, the type of pain and psychological traits should be considered for tailor-made treatments considering non-pharmacological protocols as a complement to the use of drugs.

10.
J Comput Neurosci ; 50(4): 471-484, 2022 11.
Article in English | MEDLINE | ID: mdl-35816263

ABSTRACT

Fibromyalgia (FM) is an unsolved central pain processing disturbance. We aim to provide a unifying model for FM pathogenesis based on a loop network involving thalamocortical regions, i.e., the ventroposterior lateral thalamus (VPL), the somatosensory cortex (SC), and the thalamic reticular nucleus (TRN). The dynamics of the loop have been described by three differential equations having neuron mean firing rates as variables and containing Hill functions to model mutual interactions among the loop elements. A computational analysis conducted with MATLAB has shown a transition from monostability to bistability of the loop behavior for a weakening of GABAergic transmission between TRN and VPL. This involves the appearance of a high-firing-rate steady state, which becomes dominant and is assumed to represent pathogenic pain processing giving rise to chronic pain. Our model is consistent with a bulk of literature evidence, such as neuroimaging and pharmacological data collected on FM patients, and with correlations between FM and immunoendocrine conditions, such as stress, perimenopause, chronic inflammation, obesity, and chronic dizziness. The model suggests that critical targets for FM treatment are to be found among immunoendocrine pathways leading to GABA/glutamate imbalance having an impact on the thalamocortical system.


Subject(s)
Fibromyalgia , Female , Humans , Neural Pathways/physiology , Models, Neurological , Thalamic Nuclei/physiology , Thalamus/physiology , Pain
11.
J Clin Med ; 11(14)2022 Jul 11.
Article in English | MEDLINE | ID: mdl-35887781

ABSTRACT

Fibromyalgia (FM) is a poorly understood, central pain processing disorder characterized by a broad range of symptoms, such as chronic pain, sleep disruption, chronic fatigue, and psychosomatic symptoms. In addition, recent studies have shown that FM patients also experience dizziness. We aimed to establish a prevalence rate of vestibular symptoms in a population of FM patients through a battery of questionnaires investigating socio-demographic, clinical and psychological characteristics, combined with the Dizziness Handicap Inventory (DHI) and the Situational Vertigo Questionnaire (SVQ). A total of 277 respondents, officially diagnosed with FM, completed the full study, while 80 controls were also included for DHI and SVQ questionnaires. We found that FM participants were significantly affected by vestibular symptoms, which correlated with FM-associated pain and non-pain symptoms. The dizziness reported by FM participants showed peculiar features suggesting an FM-intrinsic mechanism of vestibular dysfunction, possibly linked to migraine and dysautonomia conditions. Correlations between dizziness and depressive mood (or neuroticism), revealed an impact of dizziness on psychological status, leading to depressive reactions and interpersonal difficulties, and possibly involving a noxious, self-sustained stress condition. In conclusion, data showed a manifesting dizziness condition in FM patients that warrants careful clinical attention due to its possible inherent role in the syndrome.

12.
Molecules ; 27(13)2022 07 02.
Article in English | MEDLINE | ID: mdl-35807516

ABSTRACT

Peucedanum ostruthium (L.) W. D. J. Koch (Apiaceae) is a worldwide perennial herb native to the mountains of central Southern Europe. The rhizome has a long tradition in popular medicine, while ethnobotanical surveys have revealed local uses of leaves for superficial injuries. To experimentally validate these uses, plant material was collected in the Gran Paradiso National Park, Aosta Valley, Italy, and the rhizome and leaves were micromorphologically and phytochemically characterized. Polyphenol-enriched hydroalcoholic rhizome and leaf extracts, used in cell-free assays, showed strong and concentration-dependent antioxidant and anti-inflammatory activities. In vitro tests revealed cyclooxygenase and lipoxygenase inhibition by the leaf extract, while the rhizome extract induced only lipoxygenase inhibition. MTT assays on HaCaT keratinocytes and L929 fibroblasts showed low cytotoxicity of extracts. In vitro scratch wound test on HaCaT resulted in a strong induction of wound closure with the leaf extract, while the effect of the rhizome extract was lower. The same test on L929 cells showed similar wound closure induction with both extracts. The results confirmed the traditional medicinal uses of the rhizome as an anti-inflammatory and wound healing remedy for superficial injuries but also highlighted that the leaves can be exploited for these purposes with equal or superior effectiveness.


Subject(s)
Apiaceae , Plants, Medicinal , Anti-Inflammatory Agents/analysis , Anti-Inflammatory Agents/pharmacology , Lipoxygenases , Plant Extracts/analysis , Plant Extracts/pharmacology , Plant Leaves , Plants, Medicinal/chemistry , Rhizome/chemistry , Wound Healing
13.
Int J Mol Sci ; 23(13)2022 Jun 25.
Article in English | MEDLINE | ID: mdl-35806088

ABSTRACT

We propose a model to explain the pathogenesis of Alzheimer's disease (AD) based on the theory that any disease affecting a healthy organism originates from a bistable feedback loop that shifts the system from a physiological to a pathological condition. We focused on the known double inhibitory loop involving the cellular prion protein (PrPC) and the enzyme BACE1 that produces amyloid-beta (Aß) peptides. BACE1 is inhibited by PrPC, but its inhibitory activity is lost when PrPC binds to Aß oligomers (Aßo). Excessive Aßo formation would switch the loop to a pathogenic condition involving the Aßo-PrPC-mGluR5 complex, Fyn kinase activation, tau, and NMDAR phosphorylation, ultimately leading to neurodegeneration. Based on the emerging role of cyclic nucleotides in Aß production, and thereby in synaptic plasticity and cognitive processes, cAMP and cGMP can be considered as modulatory factors capable of inducing the transition from a physiological steady state to a pathogenic one. This would imply that critical pharmacological targets for AD treatment lie within pathways that lead to an imbalance of cyclic nucleotides in neurons. If this hypothesis is confirmed, it will provide precise indications for the development of preventive or therapeutic treatments for the disease.


Subject(s)
Alzheimer Disease , PrPC Proteins , Alzheimer Disease/metabolism , Amyloid Precursor Protein Secretases , Amyloid beta-Peptides/metabolism , Aspartic Acid Endopeptidases , Humans , Nucleotides, Cyclic , PrPC Proteins/metabolism , Prion Proteins/metabolism
14.
Drug Chem Toxicol ; 45(2): 919-931, 2022 Mar.
Article in English | MEDLINE | ID: mdl-32628037

ABSTRACT

Zornia latifolia is a plant suspected to possess psychoactive properties and marketed as a marijuana substitute under the name 'maconha brava'. In this study, the effects of fractions obtained from a 2-propanol extract of aerial portions of the plant were determined by multielectrode array (MEA) analyses on cultured networks of rat cortical neurons. Lipophilic (ZL_lipo, mainly containing flavonoid aglycones), and hydrophilic (ZL_hydro, mainly containing flavonoid glycosides) fractions were initially obtained from the raw extract. ZL_lipo significantly inhibited mean firing rate (MFR) and mean bursting rate (MBR) of MEA recordings, while ZL_hydro induced no inhibition. Column chromatography separation of ZL_lipo yielded five fractions (ZL1-ZL5), among which ZL1 induced the strongest MFR and MBR inhibition. NMR and HPLC-MS analyses of ZL1 revealed the prevalence of the common flavonoids genistein (1) and apigenin (2) (in about a 1:1 ratio), and the presence of the rare flavone syzalterin (6,8-dimethylapigenin) (3) as a minor compound. Exposures of MEA to apigenin and genistein standards did not induce the MFR and MBR inhibition observed with ZL1, whereas exposure to syzalterin standard or to a 1:9 mixture syzalterin-genistein induced effects similar to ZL1. These inhibitory effects were comparable to that observed with high-THC hashish, possibly accounting for the plant psychoactive properties. Data indicate that Z. latifolia, currently marketed as a free herbal product, should be subjected to measures of control. In addition, syzalterin showed distinctive pharmacological properties, opening the way to its possible exploitation as a neuroactive drug.


Subject(s)
Cannabis , Flavones , Analgesics/pharmacology , Animals , Flavones/toxicity , Flavonoids/analysis , Neurons , Plant Extracts/chemistry , Plant Extracts/toxicity , Rats
15.
J Integr Med ; 19(6): 526-536, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34538643

ABSTRACT

OBJECTIVE: Carpobrotus edulis (L.) N.E.Br. is a succulent perennial plant native to South Africa and grows invasively in the Mediterranean basin. It is commonly used for the treatment of various diseases, including skin wound healing and regeneration, for which experimental validation is lacking. We therefore evaluated the skin healing properties by testing a C. edulis aqueous leaf extract (CAE) on cell cultures and in enzymatic assays. METHODS: Micro-morphological analysis of leaves was carried out using scanning electron microscopy and light microscopy. Phytochemical features and antioxidant activity of CAE were evaluated by reversed-phase liquid chromatography coupled with diode array detection and electrospray ion trap mass spectrometry (RP-LC-DAD-ESI-MS), and in vitro cell-free assays. Biological activities were evaluated using keratinocytes and fibroblasts, as well as elastase, collagenase, and hyaluronidase. RESULTS: CAE showed high carbohydrates (28.59% ± 0.68%), total phenols ([101.9 ± 6.0] g gallic acid equivalents/kg dry extract [DE]), and flavonoids ([545.9 ± 26.0] g rutin equivalents/kg DE). RP-LC-DAD-ESI-MS revealed the predominant presence of hydroxycinnamic acids (51.96%), followed by tannins (14.82%) and flavonols (11.32%). The extract was not cytotoxic, had a strong and dose-dependent antioxidant activity, and inhibited collagenase (> 90% at 500 µg/mL) and hyaluronidase (100% at 1000 µg/mL). In cell culture experiments, CAE increased wound closure and collagen production, which was consistent with its high polyphenol content. CONCLUSION: Our data support the use of the C. edulis for skin care and the treatment of skin problems. Moreover, use of C. edulis for skin care purposes could be an eco-friendly solution to reduce its invasiveness in the environment.


Subject(s)
Aizoaceae , Plant Extracts , Antioxidants/pharmacology , Flavonoids , Medicine, Traditional , Phytochemicals/pharmacology , Plant Extracts/pharmacology , Polyphenols
16.
PLoS One ; 15(12): e0244234, 2020.
Article in English | MEDLINE | ID: mdl-33332476

ABSTRACT

Amyotrophic lateral sclerosis (ALS) is a poor-prognosis disease with puzzling pathogenesis and inconclusive treatments. We develop a mathematical model of ALS based on a system of interactive feedback loops, focusing on the mutant SOD1G93A mouse. Misfolded mutant SOD1 aggregates in motor neuron (MN) mitochondria and triggers a first loop characterized by oxidative phosphorylation impairment, AMP kinase over-activation, 6-phosphofructo-2-kinase (PFK3) rise, glucose metabolism shift from pentose phosphate pathway (PPP) to glycolysis, cell redox unbalance, and further worsening of mitochondrial dysfunction. Oxidative stress then triggers a second loop, involving the excitotoxic glutamatergic cascade, with cytosolic Ca2+ overload, increase of PFK3 expression, and further metabolic shift from PPP to glycolysis. Finally, cytosolic Ca2+ rise is also detrimental to mitochondria and oxidative phosphorylation, thus closing a third loop. These three loops are overlapped and positive (including an even number of inhibitory steps), hence they form a candidate multistationary (bistable) system. To describe the system dynamics, we model the interactions among the functional agents with differential equations. The system turns out to admit two stable equilibria: the healthy state, with high oxidative phosphorylation and preferential PPP, and the pathological state, with AMP kinase activation, PFK3 over expression, oxidative stress, excitotoxicity and MN degeneration. We demonstrate that the loop system is monotone: all functional agents consistently act toward the healthy or pathological condition, depending on low or high mutant SOD1 input. We also highlight that molecular interactions involving PFK3 are crucial, as their deletion disrupts the system's bistability leading to a single healthy equilibrium point. Hence, our mathematical model unveils that promising ALS management strategies should be targeted to mechanisms that keep low PFK3 expression and activity within MNs.


Subject(s)
Amyotrophic Lateral Sclerosis/pathology , Disease Models, Animal , Glucose/metabolism , Mitochondria/metabolism , Models, Theoretical , Mutation , Superoxide Dismutase-1/physiology , AMP-Activated Protein Kinases/metabolism , Amyotrophic Lateral Sclerosis/metabolism , Animals , Glycolysis , Humans , Mice , Mice, Knockout , Mitochondria/pathology , Oxidative Phosphorylation , Oxidative Stress
17.
Front Neurol ; 11: 576860, 2020.
Article in English | MEDLINE | ID: mdl-33244308

ABSTRACT

Introduction: Mal de Debarquement Syndrome (MdDS) is a poorly understood neurological disorder affecting mostly perimenopausal women. MdDS has been hypothesized to be a maladaptation of the vestibulo-ocular reflex, a neuroplasticity disorder, and a consequence of neurochemical imbalances and hormonal changes. Our hypothesis considers elements from these theories, but presents a novel approach based on the analysis of functional loops, according to Systems and Control Theory. Hypothesis: MdDS is characterized by a persistent sensation of self-motion, usually occurring after sea travels. We assume the existence of a neuronal mechanism acting as an oscillator, i.e., an adaptive internal model, that may be able to cancel a sinusoidal disturbance of posture experienced aboard, due to wave motion. Thereafter, we identify this mechanism as a multi-loop neural network that spans between vestibular nuclei and the flocculonodular lobe of the cerebellum. We demonstrate that this loop system has a tendency to oscillate, which increases with increasing strength of neuronal connections. Therefore, we hypothesize that synaptic plasticity, specifically long-term potentiation, may play a role in making these oscillations poorly damped. Finally, we assume that the neuromodulator Calcitonin Gene-Related Peptide, which is modulated in perimenopausal women, exacerbates this process thus rendering the transition irreversible and consequently leading to MdDS. Conclusion and Validation: The concept of an oscillator that becomes noxiously permanent can be used as a model for MdDS, given a high correlation between patients with MdDS and sea travels involving undulating passive motion, and an alleviation of symptoms when patients are re-exposed to similar passive motion. The mechanism could be further investigated utilizing posturography tests to evaluate if subjective perception of motion matches with objective postural instability. Neurochemical imbalances that would render individuals more susceptible to developing MdDS could be investigated through hormonal profile screening. Alterations in the connections between vestibular nuclei and cerebellum, notably GABAergic fibers, could be explored by neuroimaging techniques as well as transcranial magnetic stimulation. If our hypothesis were tested and verified, optimal targets for MdDS treatment could be found within both the neural networks and biochemical factors that are deemed to play a fundamental role in loop functioning and synaptic plasticity.

18.
Life Sci ; 258: 118232, 2020 Oct 01.
Article in English | MEDLINE | ID: mdl-32781066

ABSTRACT

AIMS: To elucidate the mechanism by which (-)-epigallocatechin-3-gallate (EGCG) mediates intracellular Ca2+ increase in androgen-independent prostate cancer (PCa) cells. MAIN METHODS: Following exposure to different doses of EGCG, viability of DU145 and PC3 PCa cells was evaluated by MTT assay and the intracellular Ca2+ dynamics by the fluorescent Ca2+ chelator Fura-2. The expression of different channels was investigated by qPCR analysis and sulfhydryl bonds by Ellman's assay. KEY FINDINGS: EGCG inhibited DU145 and PC3 proliferation with IC50 = 46 and 56 µM, respectively, and induced dose-dependent peaks of internal Ca2+ that were dependent on extracellular Ca2+. The expression of TRPC4 and TRPC6 channels was revealed by qPCR in PC3 cells, but lack of effect by modulators and blockers ruled out an exclusive role for these, as well as for voltage-dependent T-type Ca2+ channels. Application of dithiothreitol and catalase and sulfhydryl (SH) measurements showed that EGCG-induced Ca2+ rise depends on SH oxidation, while the effect of EGTA, dantrolene, and the PLC inhibitor U73122 suggested that EGCG-induced Ca2+ influx acts as a trigger for Ca2+-induced Ca2+ release, involving both ryanodine and IP3 receptors. Different from EGCG, ATP caused a rapid Ca2+ increase, which was independent of external Ca2+, but sensitive to U73122. SIGNIFICANCE: EGCG induces an internal Ca2+ increase in PCa cells by a multi-step mechanism. As dysregulation of cytosolic Ca2+ is directly linked to apoptosis in PCa cells, these data confirm the possibility of using EGCG as a synergistic adjuvant in combined therapies for recalcitrant malignancies like androgen-independent PCa.


Subject(s)
Antioxidants/pharmacology , Calcium/metabolism , Catechin/analogs & derivatives , Intracellular Fluid/metabolism , Prostatic Neoplasms/metabolism , Catechin/pharmacology , Cell Survival/drug effects , Cell Survival/physiology , Dose-Response Relationship, Drug , Humans , Intracellular Fluid/drug effects , Male , PC-3 Cells
19.
Wilderness Environ Med ; 31(3): 266-272, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32682706

ABSTRACT

INTRODUCTION: The potential efficacy of selected plant extracts to counteract the dermal toxicity of jellyfish envenomation was investigated using an in vitro cell culture model. METHODS: We studied plant extracts from Carica papaya, Ananas comosus, and Bouvardia ternifolia, known for their antivenom properties, in pairwise combinations with tissue homogenates of the jellyfish Pelagia noctiluca, Phyllorhiza punctata, and Cassiopea andromeda, to evaluate modulations of jellyfish cytotoxic effects. L929 mouse fibroblasts were incubated with pairwise jellyfish/plant extract combinations and examined by MTT assay (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide). RESULTS: C papaya and A comosus significantly lowered the cytotoxicity of P noctiluca and P punctata but induced a slight worsening of C andromeda cytotoxicity. Conversely, B ternifolia was protective against P punctata, ineffective against P noctiluca, and worsened C andromeda cytotoxicity. CONCLUSIONS: Data showed species-specific and contrasting effects of plant extracts, suggesting that those containing protease activities, namely A comosus and C papaya, are more effective in lowering the cytotoxicity of jellyfish venom containing toxic peptidic factors such as phospholipase A. However, all examined plants require further investigation in vivo to evaluate their ability to counteract jellyfish injury to the skin.


Subject(s)
Antivenins/pharmacology , Cnidarian Venoms/adverse effects , Plant Extracts/pharmacology , Scyphozoa/drug effects , Ananas/chemistry , Animals , Antivenins/chemistry , Carica/chemistry , Mice , Plant Extracts/chemistry , Rubiaceae/chemistry , Tetrazolium Salts , Thiazoles
20.
PeerJ ; 8: e9150, 2020.
Article in English | MEDLINE | ID: mdl-32461836

ABSTRACT

Melanin is the main pigment of human skin, playing the primary role of protection from ultraviolet radiation. Alteration of the melanin production may lead to hyperpigmentation diseases, with both aesthetic and health consequences. Thus, suppressors of melanogenesis are considered useful tools for medical and cosmetic treatments. A great interest is focused on natural sources, aimed at finding safe and quantitatively available depigmenting substances. Lichens are thought to be possible sources of this kind of compounds, as the occurrence of many phenolic molecules suggests possible effects on phenolase enzymes involved in melanin synthesis, like tyrosinase. In this work, we used four lichen species, Cetraria islandica Ach., Flavoparmelia caperata Hale, Letharia vulpina (L.) Hue, and Parmotrema perlatum (Hudson) M. Choisy, to obtain extracts in solvents of increasing polarity, viz. chloroform, chloroform-methanol, methanol, and water. Cell-free, tyrosinase inhibition experiments showed highest inhibition for L. vulpina methanol extract, followed by C. islandica chloroform-methanol one. Comparable results for depigmenting activities were observed by means of in vitro and in vivo systems, such as MeWo melanoma cells and zebrafish larvae. Our study provides first evidence of depigmenting effects of lichen extracts, from tyrosinase inhibition to cell and in vivo models, suggesting that L. vulpina and C. islandica extracts deserve to be further studied for developing skin-whitening products.

SELECTION OF CITATIONS
SEARCH DETAIL
...