Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
J Diabetes Metab Disord ; 23(1): 267-287, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38932892

ABSTRACT

Objectives: Diabetes mellitus (DM) is a long-standing and non-transmissible endocrine disease that generates significant clinical issues and currently affects approximately 400 million people worldwide. The aim of the present review was to analyze the most relevant and recent studies that focused on the potential application of plant extracts and phytocompounds in nanotechnology for the treatment of T2DM. Methods: Various databases were examined, including Springer Link, Google Scholar, PubMed, Wiley Online Library, and Science Direct. The search focused on discovering the potential application of nanoparticulate technologies in enhancing drug delivery of phytocompounds for the mentioned condition. Results: Several drug delivery systems have been considered, that aimed to reduce adverse effects, while enhancing the efficiency of oral antidiabetic medications. Plant-based nanoformulations have been highlighted as an innovative approach for DM treatment due to their eco-friendly and cost-effective synthesis methods. Their benefits include targeted action, enhanced availability, stability, and reduced dosage frequency. Conclusions: Nanomedicine has opened new opportunities for the diagnosis, treatment, and prevention of DM. The use of nanomaterials has demonstrated improved outcomes for both T1DM and T2DM. Notably, flavonoids, including substances such as quercetin, naringenin and myricitrin, have been recognized for their enhanced efficacy when delivered through novel nanotechnologies in preventing T2DM onset and associated complications. The perspectives on the addressed subject point to the development of more nanostructured phytocompounds with improved bioavailability and therapeutic efficacy.

2.
Pharmaceuticals (Basel) ; 16(10)2023 Oct 04.
Article in English | MEDLINE | ID: mdl-37895881

ABSTRACT

Metal nanoparticles (NPs) have garnered considerable attention, due to their unique physicochemical properties, that render them promising candidates for various applications in medicine and industry. This article offers a comprehensive overview of the most recent advancements in the manufacturing, characterization, and biomedical utilization of metal NPs, with a primary focus on silver and gold NPs. Their potential as effective anticancer, anti-inflammatory, and antimicrobial agents, drug delivery systems, and imaging agents in the diagnosis and treatment of a variety of disorders is reviewed. Moreover, their translation to therapeutic settings, and the issue of their inclusion in clinical trials, are assessed in light of over 30 clinical investigations that concentrate on administering either silver or gold NPs in conditions ranging from nosocomial infections to different types of cancers. This paper aims not only to examine the biocompatibility of nanomaterials but also to emphasize potential challenges that may limit their safe integration into healthcare practices. More than 100 nanomedicines are currently on the market, which justifies ongoing study into the use of nanomaterials in medicine. Overall, the present review aims to highlight the potential of silver and gold NPs as innovative and effective therapeutics in the field of biomedicine, citing some of their most relevant current applications.

3.
J Funct Biomater ; 14(8)2023 Jul 28.
Article in English | MEDLINE | ID: mdl-37623647

ABSTRACT

The aim of the study was to evaluate the antibacterial activity and surface hardness of a light-activated microhybrid composite resin modified with green silver nanoparticles (AgNPs). AgNPs were synthesized using an Equisetum sylvaticum extract and characterized through different methods such as UV-Vis, EDX, and FTIR. The obtained AgNPs were mixed with a microhybrid composite resin (Herculite XRV, Kerr Corp., Orange, CA, USA) in different concentrations: 0% (group A-control); 0.5% (group B); 1% (group C); and 1.5% (group D). A total of 120 composite resin disk-shaped samples were obtained and divided into 4 groups (n = 30) according to AgNP concentration. Each group was then divided into 2 subgroups: subgroup 1-samples were not soaked in 0.01 M NaOH solution; and subgroup 2-samples were soaked in 0.01 M NaOH solution. The antibacterial activity against Streptococcus mutans was determined using a direct contact test. A digital electronic hardness tester was used to determine the composite resin's Vickers surface hardness (VH). Statistical analysis was performed using the Mann-Whitney U and Kruskal-Wallis nonparametric tests with a confidence level of 95%. Groups C and D showed higher antibacterial activity against S. mutans when compared to the control group (p < 0.05). No significant differences were recorded between VH values (p > 0.05). The use of AgNPs synthesized from Equisetum sylvaticum as a composite resin filler in 1% wt. and 1.5% wt. reduced the activity of Streptococcus mutans. Soaking of the experimental composite resin decreased the antibacterial efficacy. The loading of a microhybrid composite resin with AgNPs in concentrations of 0.5% wt., 1% wt., and 1.5% wt. did not influence the surface hardness.

4.
Plants (Basel) ; 12(15)2023 Aug 04.
Article in English | MEDLINE | ID: mdl-37571024

ABSTRACT

Black-eyed Susan (Rudbeckia hirta L.), a flowering plant with various traditional medicinal uses, has recently garnered interest for its therapeutic properties. However, little is known about the potential therapeutic activities of the plant species. The current study focused on conducting a comprehensive investigation into the chemical composition and bioactivity of black-eyed Susan cultivated in Romania. Untargeted metabolite profiling and UHPLC-HR-MS phytochemical analysis of the studied extract revealed the presence of more than 250 compounds pertaining to different classes, including sesquiterpene lactones, polyphenolic acids, flavonoids, amino acids, and fatty acids. The tested extract exhibited inhibitory activity against Gram-positive bacteria and showed promising antifungal activity. It also demonstrated potent antioxidant properties through iron chelation and 15-LOX inhibition capacities, as well as inhibition of cell growth, particularly on the MCF-7 cell line, suggesting potential anticancer effects. Therefore, current research provides valuable information on the antioxidant, antimicrobial, and antitumor potential of Rudbeckia hirta flowers. Implicitly, the discovery of such a wide range of biosubstances, together with the biological activity observed for the studied extract in these preliminary in vitro studies, paves the way for future investigation of the potential application of the plant in the pharmaceutical and nutraceutical sectors.

5.
Curr Pharm Biotechnol ; 24(3): 460-470, 2023.
Article in English | MEDLINE | ID: mdl-36165530

ABSTRACT

AIMS: This study reports a simple, cost-effective, and environmentally friendly method to obtain silver nanoparticles (AgNPs) using an aqueous extract of Quercus robur bark. METHODS: AgNPs synthesis conditions such as silver nitrate concentration, extract:AgNO3 volume ratio, pH, temperature, and reaction time have been examined. After optimizing the synthesis, the obtained AgNPs were characterized by different methods such as UV-Vis, TEM, EDX, and FTIR. The antioxidant activity was evaluated using lipoxygenase inhibition capacity and inhibition of erythrocyte hemolysis mediated by peroxyl free radicals tests. The antimicrobial potential of the samples was tested against Staphylococcus aureus, Pseudomonas aeruginosa, and Candida albicans. RESULTS: The AgNPs synthesis process is influenced by reaction conditions, the optimum established values being, in this case: concentration of 3 mM AgNO3, 1:9 extract: AgNO3 volume ratio, pH value of 6, 60 ºC temperature, and 90 minutes stirring time. The shape of the synthesized AgNPs was predominantly spherical, with an average size of 50 nm. The SPR band at 432 nm, the strong EDX signal at ~ 3 keV and the zeta potential of -13.88 mV revealed the formation of AgNPs and electrostatic stabilization of the colloidal solution. FTIR analysis confirmed the participation of molecules from the extract in the synthesis and stabilization of AgNPs. The obtained nanoparticles showed improved antioxidant, antifungal and antibacterial activities compared to the extract. CONCLUSION: The results open the possibility of exploring new applications of nanoparticles obtained via green synthesis.


Subject(s)
Metal Nanoparticles , Quercus , Antioxidants/pharmacology , Antioxidants/chemistry , Plant Extracts/pharmacology , Plant Extracts/chemistry , Metal Nanoparticles/chemistry , Plant Bark , Silver , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry
6.
Life (Basel) ; 12(10)2022 Oct 19.
Article in English | MEDLINE | ID: mdl-36295078

ABSTRACT

This research describes an eco-friendly green route for the synthesis of AgNPs using an aqueous extract of Lythrum salicaria. Taguchi design was used to optimize the synthesis method, taking into account various working conditions. The optimum parameters were established using a 3 mM AgNO3 concentration, a 1:9 extract:AgNO3 volume ratio, a pH value of 8, 60 ℃ temperature, and 180 min reaction time. The synthesized AgNPs were characterized using UV-Vis and FTIR spectroscopy, and TEM and EDX analysis. The SPR band at 410 nm, as well as the functional groups of biomolecules identified by FTIR and the EDX signals at ~3 keV, confirmed the synthesis of spherical AgNPs. The average AgNPs size was determined to be 40 nm, through TEM, and the zeta potential was -19.62 mV. The antimicrobial assay showed inhibition against S. aureus and C. albicans. Moreover, the results regarding the inhibition of lipoxygenase and of peroxyl radical-mediated hemolysis assays were promising and justify further antioxidant studies.

7.
Molecules ; 27(12)2022 Jun 08.
Article in English | MEDLINE | ID: mdl-35744815

ABSTRACT

Y. schidigera contains a number of unusual polyphenols, derivatives of resveratrol and naringenin, called spiro-flavostilbenoids, which have potent in vitro anti-inflammatory, antioxidant, and moderate cholinesterase inhibitory activities. To date, these compounds have not been tested in vivo for the treatment of neurodegenerative diseases. The aim of the present study was to evaluate the effects of both single spiro-flavostilbenoids (yuccaol B and gloriosaol A) and phenolic fractions derived from Y. schidigera bark on scopolamine-induced anxiety and memory process deterioration using a Danio rerio model. Detailed phytochemical analysis of the studied fractions was carried out using different chromatographic techniques and Nuclear Magnetic Resonance (NMR). The novel tank diving test was used as a method to measure zebrafish anxiety, whereas spatial working memory function was assessed in Y-maze. In addition, acetylcholinesterase/butyrylcholinesterase (AChE/BChE) and 15-lipooxygenase (15-LOX) inhibition tests were performed in vitro. All pure compounds and fractions under study exerted anxiolytic and procognitive action. Moreover, strong anti-oxidant capacity was observed, whereas weak inhibition towards cholinesterases was found. Thus, we may conclude that the observed behavioral effects are complex and result rather from inhibition of oxidative stress processes and influence on cholinergic muscarinic receptors (both 15-LOX and scopolamine assays) than effects on cholinesterases. Y. schidigera is a source of substances with desirable properties in the prevention and treatment of neurodegenerative diseases.


Subject(s)
Neuroprotective Agents , Yucca , Acetylcholinesterase , Animals , Antioxidants/analysis , Antioxidants/pharmacology , Butyrylcholinesterase , Memory Disorders/chemically induced , Memory Disorders/drug therapy , Neuroprotective Agents/analysis , Neuroprotective Agents/pharmacology , Phenols/chemistry , Plant Bark/chemistry , Plant Extracts/chemistry , Scopolamine/adverse effects , Scopolamine/analysis , Yucca/chemistry , Zebrafish
8.
Molecules ; 26(23)2021 Dec 02.
Article in English | MEDLINE | ID: mdl-34885906

ABSTRACT

The ethanolic extracts of three Equisetum species (E. pratense Ehrh., E. sylvaticum L. and E. telmateia Ehrh.) were used to reduce silver ions to silver nanoparticles (AgNPs). The synthesized AgNPs were characterized using UV-Vis spectrophotometry, Fourier Transform Infrared Spectroscopy (FTIR), Energy Dispersive X-ray (EDX), Transmission Electron Microscopy (TEM) and Dynamic Light Scattering (DLS) measurements. FTIR data revealed the functional groups of biomolecules involved in AgNPs synthesis, such as O-H, C-H, C=O, C-O, and C-C. EDX spectroscopy was used to highlight the presence of silver, while DLS spectroscopy provided information on the mean diameter of AgNPs, that ranged from 74.4 to 314 nm. The negative Zeta potential values (-23.76 for Ep-AgNPs, -29.54 for Es-AgNPs and -20.72 for Et-AgNPs) indicate the stability of the obtained colloidal solution. The study also focused on establishing the photocatalytic activity of AgNPs, which is an important aspect in terms of removing organic dyes from the environment. The best photocatalytic activity was observed for AgNPs obtained from E. telmateia, which degraded malachite green in a proportion of 97.9%. The antioxidant action of the three AgNPs samples was highlighted comparatively through four tests, with the best overall antioxidant capacity being observed for AgNPs obtained using E. sylvaticum. Moreover, the biosynthesized AgNPs showed promising cytotoxic efficacy against cancerous cell line MG63, the AgNPs obtained from E. sylvaticum L. providing the best result, with a LD50 value around 1.5 mg/mL.


Subject(s)
Antineoplastic Agents/chemistry , Antioxidants/chemistry , Metal Nanoparticles/chemistry , Silver/chemistry , Antineoplastic Agents/pharmacology , Antioxidants/pharmacology , Catalysis , Cell Line, Tumor , Equisetum/chemistry , Green Chemistry Technology , Humans , Neoplasms/drug therapy , Silver/pharmacology
9.
Molecules ; 26(10)2021 May 20.
Article in English | MEDLINE | ID: mdl-34065533

ABSTRACT

The Artemisia genus includes a large number of species with worldwide distribution and diverse chemical composition. The secondary metabolites of Artemisia species have numerous applications in the health, cosmetics, and food sectors. Moreover, many compounds of this genus are known for their antimicrobial, insecticidal, parasiticidal, and phytotoxic properties, which recommend them as possible biological control agents against plant pests. This paper aims to evaluate the latest available information related to the pesticidal properties of Artemisia compounds and extracts and their potential use in crop protection. Another aspect discussed in this review is the use of nanotechnology as a valuable trend for obtaining pesticides. Nanoparticles, nanoemulsions, and nanocapsules represent a more efficient method of biopesticide delivery with increased stability and potency, reduced toxicity, and extended duration of action. Given the negative impact of synthetic pesticides on human health and on the environment, Artemisia-derived biopesticides and their nanoformulations emerge as promising ecofriendly alternatives to pest management.


Subject(s)
Artemisia/metabolism , Nanotechnology , Pest Control, Biological/methods , Pesticides/metabolism , Crops, Agricultural/microbiology
10.
Molecules ; 26(9)2021 Apr 28.
Article in English | MEDLINE | ID: mdl-33924900

ABSTRACT

The sterile stems belonging to the Equisetum species are often used in traditional medicine of various nations, including Romanians. They are highly efficient in treating urinary tract infections, cardiovascular diseases, respiratory tract infections, and medical skin conditions due to their content of polyphenolic derivatives that have been isolated. In this regard, this study aimed to provide the chemical composition of the extracts obtained from the Equisetum species (E. pratense, E. sylvaticum, E. telmateia) and to investigate the biological action in vitro and in vivo. For the chemical characterization of the analyzed Equisetum species extracts, studies were performed by using ultra-high-performance liquid chromatography (UHPLC-DAD). In vitro evaluation of the antioxidant activity of the plant extracts obtained from these species of Equisetum genus was determined. The neuroprotective activity of these three ethanolic extracts from the Equisetum species using zebrafish tests was determined in vivo. All obtained results were statistically significant. The results indicate that E. sylvaticum extract has a significant antioxidant activity; whereas, E. pratense extract had anxiolytic and antidepressant effects significantly higher than the other two extracts used. All these determinations indicate promising results for the antioxidant in vitro tests and neuroprotective activity of in vivo tests, particularly mediated by their active principles.


Subject(s)
Antioxidants/pharmacology , Equisetum/chemistry , Neuroprotective Agents/pharmacology , Plant Extracts/pharmacology , Animals , Antioxidants/chemistry , Chromatography, High Pressure Liquid , Flavonoids/chemistry , Flavonoids/pharmacology , Free Radical Scavengers/chemistry , Free Radical Scavengers/pharmacology , Maze Learning/drug effects , Neuroprotective Agents/chemistry , Plant Extracts/chemistry , Polyphenols/chemistry , Polyphenols/pharmacology , Sensitivity and Specificity , Zebrafish
11.
Molecules ; 26(5)2021 Feb 24.
Article in English | MEDLINE | ID: mdl-33668106

ABSTRACT

Tagetes erecta L. is a popular ornamental plant of the Asteraceae family, which is widely cultivated not only for its decorative use, but also for the extraction of lutein. Besides carotenoid representatives, which have been extensively studied, other important classes of secondary metabolites present in the plant, such as polyphenols, could exhibit important biological activities. The phytochemical analysis of a methanolic extract obtained from T. erecta inflorescences was achieved using liquid chromatography-mass spectrometry (LC-MS) techniques. The extract was further subjected to a multistep purification process, which allowed the separation of different fractions. The total extract and its fractions contain several polyphenolic compounds, such as hydroxybenzoic and hydroxycinnamic acid derivatives, flavonols (especially quercetagetin glycosides), and several aglycons (e.g., quercetin, patuletin). One of the fractions, containing mostly quercetagitrin, was subjected to two different antioxidant assays (metal chelating activity and lipoxygenase inhibition) and to in vitro cytotoxicity assessment. Generally, the biological assays showed promising results for the investigated fraction compared to the initial extract. Given the encouraging outcome of the in vitro assays, further purification and structural analysis of compounds from T. erecta extracts, as well as further in vivo investigations are justified.


Subject(s)
Antioxidants/pharmacology , Flowers/chemistry , Lipoxygenase Inhibitors/pharmacology , Phytochemicals/pharmacology , Plant Extracts/pharmacology , Tagetes/chemistry , Animals , Antioxidants/chemistry , Antioxidants/isolation & purification , Cell Survival/drug effects , Dose-Response Relationship, Drug , Fibroblasts/drug effects , Lipoxygenase/metabolism , Lipoxygenase Inhibitors/chemistry , Lipoxygenase Inhibitors/isolation & purification , Phytochemicals/chemistry , Phytochemicals/isolation & purification , Plant Extracts/chemistry , Plant Extracts/isolation & purification , Rabbits , Structure-Activity Relationship
12.
Molecules ; 24(16)2019 Aug 13.
Article in English | MEDLINE | ID: mdl-31412649

ABSTRACT

Zinnia elegans (syn. Zinnia violacea) is a common ornamental plant of the Asteraceae family, widely cultivated for the impressive range of flower colors and persistent bloom. Given its uncomplicated cultivation and high adaptability to harsh landscape conditions, we investigated the potential use of Z. elegans as a source of valuable secondary metabolites. Preliminary classification of compounds found in a methanolic extract obtained from inflorescences of Z. elegans cv. Caroussel was accomplished using HR LC-MS techniques. The extract was then subjected to solid-phase extraction and separation using Sephadex LH-20 column chromatography, which resulted in several fractions further investigated for their antioxidant properties through lipoxygenase inhibition and metal chelating activity assays. Moreover, following additional purification procedures, structures of some active ingredients were established by NMR spectroscopy. The investigated fractions contained polyphenolic compounds such as chlorogenic acids and apigenin, kaempferol, and quercetin glycosides. Antioxidant assays showed that certain fractions exhibit moderate 15-LOX inhibition (Fr 2, IC50 = 18.98 µg/mL) and metal chelation (e.g., Fr 1-2, EC50 = 0.714-1.037 mg/mL) activities as compared to positive controls (20.25 µg/mL for kaempferol and 0.068 mg/mL for EDTA, respectively). For Fr 2, the 15-LOX inhibition activity seems to be related to the abundance of kaempferol glycosides. The NMR analyses revealed the presence of a kaempferol 3-O-glycoside, and a guanidine alkaloid previously not described in this species.


Subject(s)
Antioxidants/chemistry , Antioxidants/pharmacology , Asteraceae/chemistry , Plant Extracts/chemistry , Plant Extracts/pharmacology , Antioxidants/isolation & purification , Chemical Fractionation , Chromatography, High Pressure Liquid , Magnetic Resonance Spectroscopy , Molecular Structure , Phytochemicals/chemistry , Plant Extracts/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL
...