Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Am Soc Mass Spectrom ; 33(12): 2328-2332, 2022 Dec 07.
Article in English | MEDLINE | ID: mdl-36383767

ABSTRACT

Ion microscopy allows for high-throughput mass spectrometry imaging. In order to resolve congested mass spectra, a high degree of timing precision is required from the microscope detector. In this paper we present an ion microscope mass spectrometer that uses a Timepix3 hybrid pixel readout with an optimal 1.56 ns resolution. A novel triggering technique is also employed to remove the need for an external time-to-digital converter (TDC) and allow the experiment to be performed using a low-cost and commercially available readout system. Results obtained from samples of rhodamine B demonstrate the application of multimass imaging sensors for microscope mass spectrometry imaging with high mass resolution.

2.
J Am Soc Mass Spectrom ; 31(9): 1903-1909, 2020 Sep 02.
Article in English | MEDLINE | ID: mdl-32811151

ABSTRACT

A time-dependent postextraction differential acceleration (PEDA) potential was used to temporally focus increasingly heavy ions in a stigmatic imaging mass spectrometer, allowing them to be imaged with high mass and spatial resolutions over a broad mass-to-charge (m/z) range. By applying a linearly rising potential to the ion extraction electrode, sequential m/z ratios were subjected to a changing electric field, allowing their foci to coincide at the detector. Using this approach, at least 75% of the maximum mass resolution was obtained over a 300-600 Da range when the ion microscope was focused around 450 Da, representing more than a 10-fold increase over the conventional single-field PEDA method.

3.
Rev Sci Instrum ; 91(2): 023306, 2020 Feb 01.
Article in English | MEDLINE | ID: mdl-32113397

ABSTRACT

A time-of-flight microscope imaging mass spectrometer incorporating a reflectron was used to image mass-resolved ions generated from a 270 µm diameter surface. Mass and spatial resolutions of 8100 ± 700 m/Δm and 18 µm ± 6 µm, respectively, were obtained simultaneously by using pulsed extraction differential acceleration ion optical focusing to create a pseudo-source plane for a single-stage gridless reflectron. The obtainable mass resolution was limited only by the response time of the position-sensitive detector and, according to simulations, could potentially reach 30 200 ± 2900 m/Δm. The spatial resolution can be further improved at the expense of the mass resolution to at least 6 µm by increasing the applied extraction field. An event-triggered fast imaging sensor was additionally used to record ion images for each time-of-flight peak resolved during an experimental cycle, demonstrating the high-throughput capability of the instrument.

SELECTION OF CITATIONS
SEARCH DETAIL
...