Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Oncotarget ; 6(29): 28001-10, 2015 Sep 29.
Article in English | MEDLINE | ID: mdl-26334102

ABSTRACT

While some children with acute lymphoblastic leukemia (ALL) have excellent prognoses, the prognosis for adults and children with T cell ALL is more guarded. Treatment for T-ALL is heavily dependent upon antimetabolite chemotherapeutics, including cytarabine. Targeted inhibition of WEE1 with AZD1775 has emerged as a strategy to sensitize cancer cells to cytarabine and other chemotherapeutics. We sought to determine if this strategy would be effective for T-ALL with clinically relevant anti-leukemia agents. We found that AZD1775 sensitizes T-ALL cells to several traditional anti-leukemia agents, acting synergistically with cytarabine by enhancing DNA damage and apoptosis. In addition to increased phosphorylation of H2AX at serine 139 (γH2AX), AZD1775 led to increased phosphorylation of H2AX at tyrosine 142, a signaling event associated with promotion of apoptosis over DNA repair. In a xenograft model of T-ALL, the addition of AZD1775 to cytarabine slowed leukemia progression and prolonged survival. Inhibition of WEE1 with AZD1775 sensitizes T-ALL to several anti-leukemia agents, particularly cytarabine and that mechanistically, AZD1775 promotes apoptosis over DNA repair in cells treated with cytarabine. These data support the development of clinical trials including AZD1775 in combination with conventional chemotherapy for acute leukemia.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/pharmacology , Apoptosis/drug effects , DNA Repair/drug effects , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/pathology , Pyrazoles/pharmacology , Pyrimidines/pharmacology , Animals , Cell Line, Tumor , Cytarabine/pharmacology , Drug Synergism , Female , Flow Cytometry , Humans , Mice , Pyrimidinones , Xenograft Model Antitumor Assays
2.
Blood ; 126(19): 2202-12, 2015 Nov 05.
Article in English | MEDLINE | ID: mdl-26324703

ABSTRACT

The outcome for pediatric acute lymphoblastic leukemia (ALL) patients who relapse is dismal. A hallmark of relapsed disease is acquired resistance to multiple chemotherapeutic agents, particularly glucocorticoids. In this study, we performed a genome-scale short hairpin RNA screen to identify mediators of prednisolone sensitivity in ALL cell lines. The incorporation of these data with an integrated analysis of relapse-specific genetic and epigenetic changes allowed us to identify the mitogen-activated protein kinase (MAPK) pathway as a mediator of prednisolone resistance in pediatric ALL. We show that knockdown of the specific MAPK pathway members MEK2 and MEK4 increased sensitivity to prednisolone through distinct mechanisms. MEK4 knockdown increased sensitivity specifically to prednisolone by increasing the levels of the glucocorticoid receptor. MEK2 knockdown increased sensitivity to all chemotherapy agents tested by increasing the levels of p53. Furthermore, we demonstrate that inhibition of MEK1/2 with trametinib increased sensitivity of ALL cells and primary samples to chemotherapy in vitro and in vivo. To confirm a role for MAPK signaling in patients with relapsed ALL, we measured the activation of the MEK1/2 target ERK in matched diagnosis-relapse primary samples and observed increased phosphorylated ERK levels at relapse. Furthermore, relapse samples have an enhanced response to MEK inhibition compared to matched diagnosis samples in xenograft models. Together, our data indicate that inhibition of the MAPK pathway increases chemosensitivity to glucocorticoids and possibly other agents and that the MAPK pathway is an attractive target for prevention and/or treatment of relapsed disease.


Subject(s)
Drug Resistance, Neoplasm , MAP Kinase Signaling System , Precursor Cell Lymphoblastic Leukemia-Lymphoma , Prednisolone , Pyridones/pharmacology , Pyrimidinones/pharmacology , Adolescent , Animals , Cell Line, Tumor , Child , Child, Preschool , Drug Resistance, Neoplasm/drug effects , Drug Resistance, Neoplasm/genetics , Female , Gene Knockdown Techniques , Genome-Wide Association Study , Humans , MAP Kinase Kinase 2/antagonists & inhibitors , MAP Kinase Kinase 2/genetics , MAP Kinase Kinase 2/metabolism , MAP Kinase Kinase 4/antagonists & inhibitors , MAP Kinase Kinase 4/genetics , MAP Kinase Kinase 4/metabolism , MAP Kinase Signaling System/drug effects , MAP Kinase Signaling System/genetics , Male , Mice , Precursor Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics , Precursor Cell Lymphoblastic Leukemia-Lymphoma/metabolism , Precursor Cell Lymphoblastic Leukemia-Lymphoma/pathology , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism , Xenograft Model Antitumor Assays
3.
Clin Cancer Res ; 18(11): 3030-41, 2012 Jun 01.
Article in English | MEDLINE | ID: mdl-22619307

ABSTRACT

PURPOSE: This study assessed whether myristoylated alanine-rich C-kinase substrate (MARCKS) can regulate glioblastoma multiforme (GBM) growth, radiation sensitivity, and clinical outcome. EXPERIMENTAL DESIGN: MARCKS protein levels were analyzed in five GBM explant cell lines and eight patient-derived xenograft tumors by immunoblot, and these levels were correlated to proliferation rates and intracranial growth rates, respectively. Manipulation of MARCKS protein levels was assessed by lentiviral-mediated short hairpin RNA knockdown in the U251 cell line and MARCKS overexpression in the U87 cell line. The effect of manipulation of MARCKS on proliferation, radiation sensitivity, and senescence was assessed. MARCKS gene expression was correlated with survival outcomes in the Repository of Molecular Brain Neoplasia Data (REMBRANDT) Database and The Cancer Genome Atlas (TCGA). RESULTS: MARCKS protein expression was inversely correlated with GBM proliferation and intracranial xenograft growth rates. Genetic silencing of MARCKS promoted GBM proliferation and radiation resistance, whereas MARCKS overexpression greatly reduced GBM growth potential and induced senescence. We found MARCKS gene expression to be directly correlated with survival in both the REMBRANDT and TCGA databases. Specifically, patients with high MARCKS expressing tumors of the proneural molecular subtype had significantly increased survival rates. This effect was most pronounced in tumors with unmethylated O(6)-methylguanine DNA methyltransferase (MGMT) promoters, a traditionally poor prognostic factor. CONCLUSIONS: MARCKS levels impact GBM growth and radiation sensitivity. High MARCKS expressing GBM tumors are associated with improved survival, particularly with unmethylated MGMT promoters. These findings suggest the use of MARCKS as a novel target and biomarker for prognosis in the proneural subtype of GBM.


Subject(s)
Biomarkers, Tumor/analysis , Brain Neoplasms/metabolism , Glioblastoma/metabolism , Intracellular Signaling Peptides and Proteins/physiology , Membrane Proteins/physiology , Animals , Brain Neoplasms/pathology , Brain Neoplasms/radiotherapy , Cell Line, Tumor , Cell Proliferation , Cellular Senescence , Gene Knockdown Techniques , Glioblastoma/pathology , Glioblastoma/radiotherapy , Humans , Intracellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/metabolism , Membrane Proteins/genetics , Membrane Proteins/metabolism , Mice , Mice, Nude , Myristoylated Alanine-Rich C Kinase Substrate , Neoplasm Transplantation , Prognosis , Radiation Tolerance , Transplantation, Heterologous
SELECTION OF CITATIONS
SEARCH DETAIL
...