Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Adv Mater ; : e2402478, 2024 Jul 06.
Article in English | MEDLINE | ID: mdl-38970534

ABSTRACT

Organic small molecules that exhibit second-scale phosphorescence at room temperature are of interest for potential applications in sensing, anticounterfeiting, and bioimaging. However, such materials systems are uncommon-requiring millisecond to second-scale triplet lifetimes, efficient intersystem crossing, and slow rates of nonradiative recombination. Here, a simple and scalable approach is demonstrated to activate long-lived phosphorescence in a wide variety of molecules by suspending them in rigid polymer hosts and annealing them above the polymer's glass transition temperature. This process produces submicron aggregates of the chromophore, which suppresses intramolecular motion that leads to nonradiative recombination and minimizes triplet-triplet annihilation that quenches phosphorescence in larger aggregates. In some cases, evidence of excimer-mediated intersystem crossing that enhances triplet generation in aggregated chromophores is found. In short, this approach circumvents the current design rules for long-lived phosphors, which will streamline their discovery and development.

2.
Science ; 377(6603): 307-310, 2022 07 15.
Article in English | MEDLINE | ID: mdl-35709247

ABSTRACT

To understand degradation routes and improve the stability of perovskite solar cells (PSCs), accelerated aging tests are needed. Here, we use elevated temperatures (up to 110°C) to quantify the accelerated degradation of encapsulated CsPbI3 PSCs under constant illumination. Incorporating a two-dimensional (2D) Cs2PbI2Cl2 capping layer between the perovskite active layer and hole-transport layer stabilizes the interface while increasing power conversion efficiency of the all-inorganic PSCs from 14.9 to 17.4%. Devices with this 2D capping layer did not degrade at 35°C and required >2100 hours at 110°C under constant illumination to degrade by 20% of their initial efficiency. Degradation acceleration factors based on the observed Arrhenius temperature dependence predict intrinsic lifetimes of 51,000 ± 7000 hours (>5 years) operating continuously at 35°C.

SELECTION OF CITATIONS
SEARCH DETAIL
...