Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Brain Behav Immun Health ; 15: 100265, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34589771

ABSTRACT

Microglia are tissue-resident macrophages of the central nervous system (CNS), and important for CNS development and homeostasis. In the adult CNS, microglia monitor environmental changes and react to tissue damage, cellular debris, and pathogens. Here, we present a gene expression profile of purified microglia isolated from the rhesus macaque, a non-human primate, that consists of 666 transcripts. The macaque microglia transcriptome was intersected with the transcriptional programs of microglia from mouse, zebrafish, and human CNS tissues, to determine (dis)similarities. This revealed an extensive overlap of 342 genes between the transcriptional profile of macaque and human microglia, and showed that the gene expression profile of zebrafish is most distant when compared to other species. Furthermore, an evolutionair core based on the overlapping gene expression signature from all four species was identified. This study presents a macaque microglia transcriptomics profile, and identifies a gene expression program in microglia that is preserved across species, underscoring their CNS-tailored tissue macrophage functions as innate immune cells with CNS-surveilling properties.

2.
Neurochem Int ; 142: 104924, 2021 01.
Article in English | MEDLINE | ID: mdl-33248205

ABSTRACT

As tissue-resident macrophages of the brain, microglia are increasingly considered as cellular targets for therapeutical intervention. Innate immune responses in particular have been implicated in central nervous system (CNS) infections, neuro-oncology, neuroinflammatory and neurodegenerative diseases. We here review the impact of 'nature and nurture' on microglial innate immune responses and summarize documented tissue-specific adaptations. Overall, such adaptations are associated with regulatory processes rather than with overt differences in the expressed repertoire of activating receptors of different tissue-resident macrophages. Microglial responses are characterized by slower kinetics, by a more persistent nature and by a differential usage of downstream enzymes and accessory receptors. We further consider factors like aging, previous exposure to inflammatory stimuli, and differences in the microenvironment that can modulate innate immune responses. The long-life span of microglia in the metabolically active CNS renders them susceptible to the phenomenon of 'inflammaging', and major challenges lie in the unraveling of the factors that underlie age-related alterations in microglial behavior.


Subject(s)
Brain/immunology , Immunity, Innate/immunology , Inflammation Mediators/immunology , Microglia/immunology , Neurodegenerative Diseases/immunology , Animals , Brain/metabolism , Humans , Inflammation Mediators/metabolism , Microglia/metabolism , Neurodegenerative Diseases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...