Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Clin Med ; 9(8)2020 Aug 02.
Article in English | MEDLINE | ID: mdl-32748840

ABSTRACT

The detection of rare mutational targets in plasma (liquid biopsy) has emerged as a promising tool for the assessment of patients with cancer. We determined the presence of cell-free DNA containing the BRAFV600E mutations (cfBRAFV600E) in plasma samples from 57 patients with papillary thyroid cancer (PTC) with somatic BRAFV600E mutation-positive primary tumors using microfluidic digital PCR, and co-amplification at lower denaturation temperature (COLD) PCR. Mutant cfBRAFV600E alleles were detected in 24/57 (42.1%) of the examined patients. The presence of cfBRAFV600E was significantly associated with tumor size (p = 0.03), multifocal patterns of growth (p = 0.03), the presence of extrathyroidal gross extension (p = 0.02) and the presence of pulmonary micrometastases (p = 0.04). In patients with low-, intermediate- and high-risk PTCs, cfBRAFV600E was detected in 4/19 (21.0%), 8/22 (36.3%) and 12/16 (75.0%) of cases, respectively. Patients with detectable cfBRAFV600E were characterized by a 4.68 times higher likelihood of non-excellent response to therapy, as compared to patients without detectable cfBRAFV600E (OR (odds ratios), 4.68; 95% CI (confidence intervals)) 1.26-17.32; p = 0.02). In summary, the combination of digital polymerase chain reaction (dPCR) with COLD-PCR enables the detection of BRAFV600E in the liquid biopsy from patients with PTCs and could prove useful for the identification of patients with PTC at an increased risk for a structurally or biochemically incomplete or indeterminate response to treatment.

2.
Cancers (Basel) ; 11(12)2019 Dec 02.
Article in English | MEDLINE | ID: mdl-31810221

ABSTRACT

We examined the utility of microfluidic digital PCR (dPCR) for detection of BRAF and TERT mutations in thyroid tumors. DNA extracted from 100 thyroid tumors (10 follicular adenomas, 10 follicular cancers, 5 medullary cancers, and 75 papillary thyroid cancer (PTC) were used for detection of BRAF and TERT mutations. Digital PCRs were performed using rare mutation SNP genotyping assays on QuantStudio 3D platform. In PTCs, BRAFV600E was detected by dPCR and Sanger sequencing in 42/75 (56%) and in 37/75 (49%), respectively. BRAFV600E was not detected in other tumors. The ratio of mutant/total BRAF alleles varied from 4.7% to 47.5%. These ratios were higher in classical PTCs (27.1%) as compared to follicular variant PTCs (9.4%) p = 0.001. In PTCs with and without metastases, the ratios of mutant/total BRAF alleles were 27.6% and 18.4%, respectively, (p = 0.03). In metastatic lesions percentages of mutant/total BRAF alleles were similar to those detected in primary tumors. TERTC228T and TERTC250T were found in two and one cases, respectively, and these tumors concomitantly harbored BRAFV600E. These tumors exhibited gross extra-thyroidal extension, metastases to lymph nodes, and pulmonary metastases (one case). Our results showed that dPCR allows quantitative assessment of druggable targets in PTCs and could be helpful in a molecular-based stratification of prognosis in patients with thyroid cancer.

SELECTION OF CITATIONS
SEARCH DETAIL
...