Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Immunother Cancer ; 8(2)2020 12.
Article in English | MEDLINE | ID: mdl-33323462

ABSTRACT

BACKGROUND: Bintrafusp alfa is a first-in-class bifunctional fusion protein composed of the extracellular domain of transforming growth factor (TGF)-ßRII (a TGF-ß 'trap') fused to a human IgG1 mAb blocking programmed cell death ligand 1. This is the largest analysis of patients with advanced, pretreated human papillomavirus (HPV)-associated malignancies treated with bintrafusp alfa. METHODS: In these phase 1 (NCT02517398) and phase 2 trials (NCT03427411), 59 patients with advanced, pretreated, checkpoint inhibitor-naive HPV-associated cancers received bintrafusp alfa intravenously every 2 weeks until progressive disease, unacceptable toxicity, or withdrawal. Primary endpoint was best overall response per Response Evaluation Criteria in Solid Tumors (RECIST) V.1.1; other endpoints included safety. RESULTS: As of April 17, 2019 (phase 1), and October 4, 2019 (phase 2), the confirmed objective response rate per RECIST V.1.1 in the checkpoint inhibitor-naive, full-analysis population was 30.5% (95% CI, 19.2% to 43.9%; five complete responses); eight patients had stable disease (disease control rate, 44.1% (95% CI, 31.2% to 57.6%)). In addition, three patients experienced a delayed partial response after initial disease progression, for a total clinical response rate of 35.6% (95% CI, 23.6% to 49.1%). An additional patient with vulvar cancer had an unconfirmed response. Forty-nine patients (83.1%) experienced treatment-related adverse events, which were grade 3/4 in 16 patients (27.1%). No treatment-related deaths occurred. CONCLUSION: Bintrafusp alfa showed clinical activity and manageable safety and is a promising treatment in HPV-associated cancers. These findings support further investigation of bintrafusp alfa in patients with advanced, pretreated HPV-associated cancers.


Subject(s)
B7-H1 Antigen/drug effects , Neoplasms/drug therapy , Papillomaviridae/drug effects , Papillomavirus Infections/complications , Papillomavirus Infections/drug therapy , Transforming Growth Factor beta/drug effects , Female , Humans , Male , Middle Aged , Neoplasms/virology , Papillomavirus Infections/pathology
2.
Oncologist ; 25(6): 479-e899, 2020 06.
Article in English | MEDLINE | ID: mdl-31594913

ABSTRACT

LESSONS LEARNED: Concurrent ETBX-011, ETBX-051, and ETBX-061 can be safely administered to patients with advanced cancer. All patients developed CD4+ and/or CD8+ T-cell responses after vaccination to at least one tumor-associated antigen (TAA) encoded by the vaccine; 5/6 patients (83%) developed MUC1-specific T cells, 4/6 (67%) developed CEA-specific T cells, and 3/6 (50%) developed brachyury-specific T cells. The presence of adenovirus 5-neutralizing antibodies did not prevent the generation of TAA-specific T cells. BACKGROUND: A novel adenovirus-based vaccine targeting three human tumor-associated antigens-CEA, MUC1, and brachyury-has demonstrated antitumor cytolytic T-cell responses in preclinical animal models of cancer. METHODS: This open-label, phase I trial evaluated concurrent administration of three therapeutic vaccines (ETBX-011 = CEA, ETBX-061 = MUC1 and ETBX-051 = brachyury). All three vaccines used the same modified adenovirus 5 (Ad5) vector backbone and were administered at a single dose level (DL) of 5 × 1011 viral particles (VP) per vector. The vaccine regimen consisting of all three vaccines was given every 3 weeks for three doses then every 8 weeks for up to 1 year. Clinical and immune responses were evaluated. RESULTS: Ten patients enrolled on trial (DL1 = 6 with 4 in the DL1 expansion cohort). All treatment-related adverse events were temporary, self-limiting, grade 1/2 and included injection site reactions and flu-like symptoms. Antigen-specific T cells to MUC1, CEA, and/or brachyury were generated in all patients. There was no evidence of antigenic competition. The administration of the vaccine regimen produced stable disease as the best clinical response. CONCLUSION: Concurrent ETBX-011, ETBX-051, and ETBX-061 can be safely administered to patients with advanced cancer. Further studies of the vaccine regimen in combination with other agents, including immune checkpoint blockade, are planned.


Subject(s)
Cancer Vaccines , Neoplasms , Adenoviridae/genetics , Animals , Carcinoembryonic Antigen , Fetal Proteins , Humans , Immunotherapy , Mucin-1 , Neoplasms/therapy , T-Box Domain Proteins
3.
Clin Cancer Res ; 25(16): 4933-4944, 2019 Aug 15.
Article in English | MEDLINE | ID: mdl-31110074

ABSTRACT

PURPOSE: BN-CV301 is a poxviral-based vaccine comprised of recombinant (rec.) modified vaccinia Ankara (MVA-BN-CV301; prime) and rec. fowlpox (FPV-CV301; boost). Like its predecessor PANVAC, BN-CV301 contains transgenes encoding tumor-associated antigens MUC1 and CEA as well as costimulatory molecules (B7.1, ICAM-1, and LFA-3). PANVAC was reengineered to make it safer and more antigenic. PATIENTS AND METHODS: This open-label, 3+3 design, dose-escalation trial evaluated three dose levels (DL) of MVA-BN-CV301: one, two, or four subcutaneous injections of 4 × 108 infectious units (Inf.U)/0.5 mL on weeks 0 and 4. All patients received FPV-CV301 subcutaneously at 1 × 109 Inf.U/0.5 mL every 2 weeks for 4 doses, then every 4 weeks. Clinical and immune responses were evaluated. RESULTS: There were no dose-limiting toxicities. Twelve patients enrolled on trial [dose level (DL) 1 = 3, DL2 = 3, DL3 = 6). Most side effects were seen with the prime doses and lessened with subsequent boosters. All treatment-related adverse events were temporary, self-limiting, grade 1/2, and included injection-site reactions and flu-like symptoms. Antigen-specific T cells to MUC1 and CEA, as well as to a cascade antigen, brachyury, were generated in most patients. Single-agent BN-CV301 produced a confirmed partial response (PR) in 1 patient and prolonged stable disease (SD) in multiple patients, most notably in KRAS-mutant gastrointestinal tumors. Furthermore, 2 patients with KRAS-mutant colorectal cancer had prolonged SD when treated with an anti-PD-L1 antibody following BN-CV301. CONCLUSIONS: The BN-CV301 vaccine can be safely administered to patients with advanced cancer. Further studies of the vaccine in combination with other agents are planned.See related commentary by Repáraz et al., p. 4871.


Subject(s)
Cancer Vaccines , Carcinoembryonic Antigen , Animals , CD58 Antigens , Humans , Intercellular Adhesion Molecule-1 , Mucin-1 , T-Lymphocytes/immunology , Vaccinia virus/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...