Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 53
Filter
1.
PLoS Med ; 20(9): e1004278, 2023 09.
Article in English | MEDLINE | ID: mdl-37682971

ABSTRACT

BACKGROUND: Tuberculosis (TB) prevalence remains persistently high in many settings, with new or expanded interventions required to achieve substantial reductions. The HIV Prevention Trials Network (HPTN) 071 (PopART) community-randomised trial randomised 14 communities to receive the "PopART" intervention during 2014 to 2017 (7 arm A and 7 arm B communities) and 7 communities to receive standard-of-care (arm C). The intervention was delivered door-to-door by community HIV care providers (CHiPs) and included universal HIV testing, facilitated linkage to HIV care at government health clinics, and systematic TB symptom screening. The Tuberculosis Reduction through Expanded Anti-retroviral Treatment and Screening (TREATS) study aimed to measure the impact of delivering the PopART intervention on TB outcomes, in communities with high HIV and TB prevalence. METHODS AND FINDINGS: The study population of the HPTN 071 (PopART) trial included individuals aged ≥15 years living in 21 urban and peri-urban communities in Zambia and South Africa, with a total population of approximately 1 million and an adult HIV prevalence of around 15% at the time of the trial. Two sputum samples for TB testing were provided to CHiPs by individuals who reported ≥1 TB suggestive symptom (a cough for ≥2 weeks, unintentional weight loss ≥1.5 kg in the last month, or current night sweats) or that a household member was currently on TB treatment. Antiretroviral therapy (ART) was offered universally at clinics in arm A and according to local guidelines in arms B and C. The TREATS study was conducted in the same 21 communities as the HPTN 071 (PopART) trial between 2017 and 2022, and TB prevalence was a co-primary endpoint of the TREATS study. The primary comparison was between the PopART intervention (arms A and B combined) and the standard-of-care (arm C). During 2019 to 2021, a TB prevalence survey was conducted among randomly selected individuals aged ≥15 years (approximately 1,750 per community in arms A and B, approximately 3,500 in arm C). Participants were screened on TB symptoms and chest X-ray, with diagnostic testing using Xpert-Ultra followed by culture for individuals who screened positive. Sputum eligibility was determined by the presence of a cough for ≥2 weeks, or ≥2 of 5 "TB suggestive" symptoms (cough, weight loss for ≥4 weeks, night sweats, chest pain, and fever for ≥2 weeks), or chest X-ray CAD4TBv5 score ≥50, or no available X-ray results. TB prevalence was compared between trial arms using standard methods for cluster-randomised trials, with adjustment for age, sex, and HIV status, and multiple imputation was used for missing data on prevalent TB. Among 83,092 individuals who were eligible for the survey, 49,556 (59.6%) participated, 8,083 (16.3%) screened positive, 90.8% (7,336/8,083) provided 2 sputum samples for Xpert-Ultra testing, and 308 (4.2%) required culture confirmation. Overall, estimated TB prevalence was 0.92% (457/49,556). The geometric means of 7 community-level prevalence estimates were 0.91%, 0.70%, and 0.69% in arms A, B, and C, respectively, with no evidence of a difference comparing arms A and B combined with arm C (adjusted prevalence ratio 1.14, 95% confidence interval, CI [0.67, 1.95], p = 0.60). TB prevalence was higher among people living with HIV than HIV-negative individuals, with an age-sex-community adjusted odds ratio of 2.29 [95% CI 1.54, 3.41] in Zambian communities and 1.61 [95% CI 1.13, 2.30] in South African communities. The primary limitations are that the study was powered to detect only large reductions in TB prevalence in the intervention arm compared with standard-of-care, and the between-community variation in TB prevalence was larger than anticipated. CONCLUSIONS: There was no evidence that the PopART intervention reduced TB prevalence. Systematic screening for TB that is based on symptom screening alone may not be sufficient to achieve a large reduction in TB prevalence over a period of several years. Including chest X-ray screening alongside TB symptom screening could substantially increase the sensitivity of systematic screening for TB. TRIAL REGISTRATION: The TREATS study was registered with ClinicalTrials.gov Identifier: NCT03739736 on November 14, 2018. The HPTN 071 (PopART) trial was registered at ClinicalTrials.gov under number NCT01900977 on July 17, 2013.


Subject(s)
HIV Infections , HIV , Adult , Humans , South Africa/epidemiology , Zambia/epidemiology , Cross-Sectional Studies , Cough , Prevalence , HIV Infections/diagnosis , HIV Infections/drug therapy , HIV Infections/epidemiology , Research Design
2.
Biochem Pharmacol ; 212: 115564, 2023 06.
Article in English | MEDLINE | ID: mdl-37116665

ABSTRACT

Cellular protein synthesis is accelerated in human colorectal cancer (CRC), and high expression of protein synthesis regulators in CRC patients is associated with poor prognosis. Thus, inhibition of protein synthesis may be an effective therapeutic strategy for CRC. We previously demonstrated that the quassinoid bruceantinol (BOL) had antitumor activity against CRC. Herein, potent tumor growth suppression (>80%) and STAT3 inhibition was observed in two different mouse models following BOL administration. Loss of body and spleen weight was observed but was eliminated upon nanoparticle encapsulation while maintaining strong antitumor activity. STAT3 siRNA knockdown exhibited modest suppression of cell proliferation. Surprisingly, STAT3 inhibition using a PROTAC degrader (SD-36) had little effect on cancer cell proliferation suggesting the possibility of additional mechanism(s) of action for quassinoids. BOL-resistant (BR) cell lines, HCT116BR and HCA7BR, were equally sensitive to standard CRC therapeutic agents and known STAT3 inhibitors but resistant to homoharringtonine (HHT), a known protein synthesis inhibitor. The ability of quassinoids to inhibit protein synthesis was dependent on the structure of the C15 sidechain. Of note, BOL did not inhibit protein synthesis in normal human colon epithelial cells whereas HHT and napabucasin remained effective in these normal cells. Novel quassinoids were designed, synthesized, and evaluated in pre-clinical CRC models. Treatment with the most potent analog, 5c, resulted in significant inhibition of cell proliferation and protein synthesis at nanomolar concentrations. These quassinoid analogs may represent a novel class of protein synthesis inhibitors for the treatment of human CRC.


Subject(s)
Colorectal Neoplasms , Quassins , Animals , Mice , Humans , Colorectal Neoplasms/metabolism , Quassins/pharmacology , Cell Proliferation , Cell Line, Tumor , Xenograft Model Antitumor Assays , STAT3 Transcription Factor/metabolism
3.
Article in English | MEDLINE | ID: mdl-34052557

ABSTRACT

Enarodustat, a potent, orally bioavailable, selective inhibitor of hypoxia inducible factor-Prolyl hydroxylase (HIF-PH), has been approved recently in Japan for the treatment of anemia in patients with chronic kidney disease (CKD). To evaluate the pharmacokinetics of enarodustat, a bioanalytical assay in human plasma was needed for the quantitation of enarodustat for both healthy subjects and patients with CKD. The UPLC-MS/MS method for the quantitation of enarodustat was initially validated in a bioanalytical laboratory in Japan to support clinical studies conducted in Japan, and then was transferred and validated in a bioanalytical laboratory in United States to support clinical studies conducted here. A cross-validation was successfully performed between the two bioanalytical laboratories using both quality control (QC) samples and incurred study samples. Enarodustat was fortified with its isotopically labeled internal standard in a 25 µL plasma aliquot and extracted with protein precipitation. The chromatographic separation was achieved on an Acquity UPLC BEH C18 (1.7 µm, 2.1 × 50 mm) column with gradient elution. The calibration curve range for the assay was 1.00-500 ng/mL. Assay precision, accuracy, linearity, selectivity, sensitivity and analyte stability covering sample storage and analysis were established. No interferences were observed from medications that may be co-administered along with enarodustat. The validated UPLC-MS-MS method at the US bioanalytical laboratory has been successfully applied to eight clinical studies for the determination of enarodustat concentrations in human plasma for both healthy subjects and patients with CKD.


Subject(s)
Chromatography, High Pressure Liquid/methods , N-substituted Glycines/blood , Pyridines/blood , Tandem Mass Spectrometry/methods , Triazoles/blood , Humans , Linear Models , N-substituted Glycines/chemistry , N-substituted Glycines/pharmacokinetics , Pyridines/chemistry , Pyridines/pharmacokinetics , Reproducibility of Results , Sensitivity and Specificity , Triazoles/chemistry , Triazoles/pharmacokinetics
4.
ACS Med Chem Lett ; 11(10): 1893-1898, 2020 Oct 08.
Article in English | MEDLINE | ID: mdl-33062170

ABSTRACT

Organophosphorus nerve agents (OPNAs) inhibit acetylcholinesterase (AChE) and, despite the Chemical Weapons Convention arms control treaty, continue to represent a threat to both military personnel and civilians. 2-Pralidoxime (2-PAM) is currently the only therapeutic countermeasure approved by the United States Food and Drug Administration for treating OPNA poisoning. However, 2-PAM is not centrally active due to its hydrophilicity and resulting poor blood-brain barrier permeability; hence, these deficiencies warrant the development of more hydrophobic analogs. Specifically, gaps exist in previously published structure activity relationship (SAR) studies for 2-PAM, thereby making it difficult to rationally design novel analogs that are concomitantly more permeable and more efficacious. In this study, we methodically performed a methyl scan on the core pyridinium of 2-PAM to identify ring positions that could tolerate both additional steric bulk and hydrophobicity. Subsequently, SAR-guided molecular docking was used to rationalize hydropathically feasible binding modes for 2-PAM and the reported derivatives. Overall, the data presented herein provide new insights that may facilitate the rational design of more efficacious 2-PAM analogs.

5.
ChemMedChem ; 15(5): 449-458, 2020 03 05.
Article in English | MEDLINE | ID: mdl-31834975

ABSTRACT

Organosulfur compounds show cytotoxic potential towards many tumor cell lines. Disulfides and thiosulfonates act through apoptotic processes, inducing proteins associated with apoptosis, endoplasmic reticulum stress, and the unfolded protein response. Three p-substituted symmetric diaryl disulfides and three diaryl thiosulfonates were synthesized and analyzed for inhibition of tubulin polymerization and for human cancer cell cytotoxic activity against seven tumor cell lines and a non-tumor cell line. S-(4-methoxyphenyl)-4-methoxybenzenesulfonothioate (6) exhibited inhibition of tubulin polymerization and showed the best antiproliferative potential, especially against the 786-0 cell line, being six times more selective as compared with the non-tumor cell line. In addition, compound 6 was able to activate caspase-3 after 24 and 48 h treatments of the 786-0 cell line and induced cell-cycle arrest in the G2/M stage at the highest concentration evaluated at 24 and 48 h. Compound 6 was able to cause complete inhibition of proliferation, inducing the death of 786-0 cells, by increasing the number of cells at G2/M and greater activation of caspase-3.


Subject(s)
Antineoplastic Agents/pharmacology , Carcinoma, Renal Cell/drug therapy , Kidney Neoplasms/drug therapy , Animals , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Carcinoma, Renal Cell/metabolism , Carcinoma, Renal Cell/pathology , Cell Line , Cell Proliferation/drug effects , Drug Screening Assays, Antitumor , Humans , Kidney Neoplasms/metabolism , Kidney Neoplasms/pathology , Mice , Molecular Docking Simulation , Molecular Structure , Polymerization/drug effects , Tubulin/metabolism
6.
J Pharmacol Exp Ther ; 371(3): 652-662, 2019 12.
Article in English | MEDLINE | ID: mdl-31601683

ABSTRACT

Oncogenic protein tyrosine phosphatases (PTPs) are overexpressed in numerous human cancers but they have been challenging pharmacological targets. The emblematic oncogenic PTP4A tyrosine phosphatase family regulates many fundamental malignant processes. 7-Imino-2-phenylthieno[3,2-c]pyridine-4,6(5H,7H)-dione (JMS-053) is a novel, potent, and selective PTP4A inhibitor but its mechanism of action has not been fully elucidated, nor has the chemotype been fully investigated. Because tyrosine phosphatases are notoriously susceptible to oxidation, we interrogated JMS-053 and three newly synthesized analogs with specific attention on the role of oxidation. JMS-053 and its three analogs were potent in vitro PTP4A3 inhibitors, but 7-imino-5-methyl-2-phenylthieno[3,2-c]pyridine-4,6(5H,7H)-dione (NRT-870-59) appeared unique among the thienopyridinediones with respect to its inhibitory specificity for PTP4A3 versus both a PTP4A3 A111S mutant and an oncogenic dual specificity tyrosine phosphatase, CDC25B. Like JMS-053, NRT-870-59 was a reversible PTP4A3 inhibitor. All of the thienopyridinediones retained cytotoxicity against human ovarian and breast cancer cells grown as pathologically relevant three-dimensional spheroids. Inhibition of cancer cell colony formation by NRT-870-59, like JMS-053, required PTP4A3 expression. JMS-053 failed to generate significant detectable reactive oxygen species in vitro or in cancer cells. Mass spectrometry results indicated no disulfide bond formation or oxidation of the catalytic Cys104 after in vitro incubation of PTP4A3 with JMS-053 or NRT-870-59. Gene expression profiling of cancer cells exposed to JMS-053 phenocopied many of the changes seen with the loss of PTP4A3 and did not indicate oxidative stress. These data demonstrate that PTP4A phosphatases can be selectively targeted with small molecules that lack prominent reactive oxygen species generation and encourage further studies of this chemotype. SIGNIFICANCE STATEMENT: Protein tyrosine phosphatases are emerging as important contributors to human cancers. We report on a new class of reversible protein phosphatase small molecule inhibitors that are cytotoxic to human ovarian and breast cancer cells, do not generate significant reactive oxygen species in vitro and in cells, and could be valuable lead molecules for future studies of PTP4A phosphatases.


Subject(s)
Antineoplastic Agents/pharmacology , Imines/pharmacology , Neoplasm Proteins/antagonists & inhibitors , Protein Tyrosine Phosphatases/antagonists & inhibitors , Pyridines/pharmacology , Pyridones/pharmacology , Cell Line, Tumor , Humans , Mutation , Neoplasm Proteins/genetics , Protein Tyrosine Phosphatases/genetics , Reactive Oxygen Species/metabolism
7.
Bioorg Med Chem Lett ; 29(16): 2008-2015, 2019 08 15.
Article in English | MEDLINE | ID: mdl-31307888

ABSTRACT

Protein tyrosine phosphatases (PTPs) are emerging new targets for drug discovery. PTPs and protein tyrosine kinases (PTKs) maintain cellular homeostasis through opposing roles: tyrosine O-dephosphorylation and -phosphorylation, respectively. An imbalance in the phosphorylation equilibrium results in aberrant protein signaling and pathophysiological conditions. PTPs have historically been considered 'undruggable', in part due to a lack of evidence defining their relationship to disease causality and a focus on purely competitive inhibitors. However, a better understanding of protein-protein interfaces and shallow active sites has recently renewed interest in the pursuit of allosteric and orthosteric modulators of targets outside the major druggable protein families. While their biological mechanism of action still remains to be clarified, PTP4A1-3 (also referred to as PRL1-3) are validated oncology targets and play an important role in cell proliferation, metastasis, and tumor angiogenesis. In this Digest, recent syntheses and structure-activity relationships (SAR) of small molecule inhibitors (SMIs) of PTP4A1-3 are summarized, and enzyme docking studies of the most potent chemotype are highlighted. In particular, the thienopyridone scaffold has emerged as a potent lead structure to interrogate the function and druggability of this dual-specificity PTP.


Subject(s)
Enzyme Inhibitors/therapeutic use , Protein Tyrosine Phosphatases/antagonists & inhibitors , Animals , Catalytic Domain , Cell Line, Tumor , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/metabolism , Enzyme Inhibitors/pharmacology , Humans , Molecular Docking Simulation , Molecular Structure , Protein Binding , Protein Tyrosine Phosphatases/chemistry , Protein Tyrosine Phosphatases/metabolism , Pyridones/chemical synthesis , Pyridones/metabolism , Pyridones/pharmacology , Pyridones/therapeutic use , Structure-Activity Relationship , Thiophenes/chemical synthesis , Thiophenes/metabolism , Thiophenes/pharmacology , Thiophenes/therapeutic use
8.
Mol Cancer Ther ; 18(10): 1765-1774, 2019 10.
Article in English | MEDLINE | ID: mdl-31341033

ABSTRACT

The preclinical antitumor agent RITA (2,5-bis[5-hydroxymethyl-2-thienyl] furan, NSC 652287), an analog of the natural product α-terthiophene, failed during the development phase due to acute pulmonary toxicity in animal models. A series of synthetic modifications to RITA's heterocyclic scaffold resulted in activity ranging from broadly cytotoxic to highly selective. In the NCI 60-cell line screen, these "hyperselective" agents (e.g., imatinib) are rare. A selectivity index (SI) was developed to quantify this desirable feature, which is 20 for imatinib, whereas RITA's SI is only 0.10. One of the described hyperselective RITA analogs (SI = 7.9) completely lost activity in the presence of a known SULT1A1 inhibitor. These results, coupled with previous evidence that RITA is a SULT1A1 substrate, suggest that carbinol modification by a sulfate leaving group and subsequent formation of a reactive carbocation may explain RITA's broad cytotoxicity. Although SULT1A1 expression is required for susceptibility, hyperselective analogs exhibited reduced association of activity with SULT1A1 mRNA expression compared with RITA, apparently requiring some additional target(s). In support of this hypothesis, there is a strong correlation (P < 0.01, r = 0.95) between quantum mechanically calculated energy barriers for carbocation formation from sulfonated analogs and SI, indicating that hyperselective RITA analogs generate reactive carbocations less readily after sulfate activation. Importantly, narrowing the cytotoxicity profile of RITA did not eliminate its analogs' in vivo antitumor activity, as several new hyperselective agents, NSC 773097 (1), 773392 (2), and 782846 (6), displayed impressive activity against A498 xenografts in mice.


Subject(s)
Antineoplastic Agents/pharmacology , Furans/pharmacology , Animals , Antineoplastic Agents/chemistry , Arylsulfotransferase/genetics , Arylsulfotransferase/metabolism , Cell Death/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Female , Furans/chemistry , Gene Expression Regulation, Neoplastic/drug effects , Humans , Mice, Inbred BALB C , Mice, Nude
9.
ACS Med Chem Lett ; 10(6): 1002-1006, 2019 Jun 13.
Article in English | MEDLINE | ID: mdl-31223462

ABSTRACT

The use of zebrafish in whole organism phenotypic assays has become a valuable strategy throughout the drug discovery process. Zebrafish assays can be used not only to screen libraries of compounds at the earliest stages but also to evaluate advanced leads for their effects on specific biological pathways or for toxicity. However, when confronted with inactivity of a compound in a zebrafish assay, there are little data that can be used to judge if the compound is truly biologically inert or inactive due to a lack of permeability into the model organism. While medicinal chemistry principles suggest parameters that are predictive of human oral bioavailability, cellular permeability, and even bacterial permeability, there have been no such parameters developed for zebrafish absorption. To address this question, we compiled a set of 700 compounds reported in the literature to be active in zebrafish assays, evaluated their properties, and compared them to properties derived from a set of historical drugs and a set of recently approved oral drugs. While some properties overlap, the averages and 10th and 90th percentiles of molecular weight, octanol-water partition coefficient (logP), H-bond counts, and polar surface area for zebrafish-active compounds are statistically different from those of known drugs. This analysis should be useful to scientists interpreting structure-activity relationships based on data from zebrafish assays and help to inform the translation from fish to mammals.

10.
Org Biomol Chem ; 17(9): 2448-2466, 2019 02 27.
Article in English | MEDLINE | ID: mdl-30746541

ABSTRACT

A continuous flow photooxygenation of 7-aminothieno[3,2-c]pyridin-4(5H)-ones to produce 7-iminothieno[3,2-c]pyridine-4,6(5H,7H)-diones has been developed, utilizing ambient air as the sole reactant. N-H Imines are formed as the major products, and excellent functional group tolerance and conversion on gram-scale without the need for chromatographic purification allow for facile late-stage diversification of the aminothienopyridinone scaffold. Several analogs exhibit potent in vitro inhibition of the cancer-associated protein tyrosine phosphatase PTP4A3, and the SAR supports an exploratory docking model.


Subject(s)
Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Neoplasm Proteins/antagonists & inhibitors , Protein Tyrosine Phosphatases/antagonists & inhibitors , Pyridones/chemistry , Pyridones/pharmacology , Thienopyridines/chemistry , Thienopyridines/pharmacology , Amination , Humans , Light , Models, Molecular , Neoplasm Proteins/metabolism , Oxidation-Reduction , Protein Tyrosine Phosphatases/metabolism , Structure-Activity Relationship
11.
ACS Med Chem Lett ; 9(11): 1075-1081, 2018 Nov 08.
Article in English | MEDLINE | ID: mdl-30429948

ABSTRACT

Optimization of the side-chain of a phenyl indole scaffold identified from a high-throughput screening campaign for inhibitors of the AAA+ ATPase p97 is reported. The addition of an N-alkyl piperazine led to high potency of this series in a biochemical assay, activity in cell-based assays, and excellent pharmaceutical properties. Molecular modeling based on a subsequently obtained cryo-EM structure of p97 in complex with a phenyl indole was used to rationalize the potency of these allosteric inhibitors.

12.
Int J Equity Health ; 17(1): 107, 2018 10 05.
Article in English | MEDLINE | ID: mdl-30286772

ABSTRACT

BACKGROUND: The general practitioner contracting initiative (GPCI) is a health systems strengthening initiative piloted in the first phase of national health insurance (NHI) implementation in South Africa as it progresses towards universal health coverage (UHC). GPCI aimed to address the shortage of doctors in the public sector by contracting-in private sector general practitioners (GPs) to render services in public primary health care clinics. This paper explores the early inception and emergence of the GPCI. It describes three models of contracting-in that emerged and interrogates key factors influencing their evolution. METHODS: This qualitative multi-case study draws on three cases. Data collection comprised document review, key informant interviews and focus group discussions with national, provincial and district managers as well as GPs (n = 68). Walt and Gilson's health policy analysis triangle and Liu's conceptual framework on contracting-out were used to explore the policy content, process, actors and contractual arrangements involved. RESULTS: Three models of contracting-in emerged, based on the type of purchaser: a centralized-purchaser model, a decentralized-purchaser model and a contracted-purchaser model. These models are funded from a single central source but have varying levels of involvement of national, provincial and district managers. Funds are channelled from purchaser to provider in slightly different ways. Contract formality differed slightly by model and was found to be influenced by context and type of purchaser. Conceptualization of the GPCI was primarily a nationally-driven process in a context of high-level political will to address inequity through NHI implementation. Emergence of the models was influenced by three main factors, flexibility in the piloting process, managerial capacity and financial management capacity. CONCLUSION: The GPCI models were iterations of the centralized-purchaser model. Emergence of the other models was strongly influenced by purchaser capacity to manage contracts, payments and recruitment processes. Findings from the decentralized-purchaser model show importance of local context, provincial capacity and experience on influencing evolution of the models. Whilst contract characteristics need to be well defined, allowing for adaptability to the local context and capacity is critical. Purchaser capacity, existing systems and institutional knowledge and experience in contracting and financial management should be considered before adopting a decentralized implementation approach.


Subject(s)
Contract Services/organization & administration , General Practitioners/organization & administration , National Health Programs/organization & administration , Delivery of Health Care/organization & administration , Government Programs , Humans , Politics , Private Sector , Public Sector , Qualitative Research , South Africa , Universal Health Insurance/organization & administration
13.
Oncotarget ; 9(9): 8223-8240, 2018 Feb 02.
Article in English | MEDLINE | ID: mdl-29492190

ABSTRACT

Overexpression of protein tyrosine phosphatase PTP4A oncoproteins is common in many human cancers and is associated with poor patient prognosis and survival. We observed elevated levels of PTP4A3 phosphatase in 79% of human ovarian tumor samples, with significant overexpression in tumor endothelium and pericytes. Furthermore, PTP4A phosphatases appear to regulate several key malignant processes, such as invasion, migration, and angiogenesis, suggesting a pivotal regulatory role in cancer and endothelial signaling pathways. While phosphatases are attractive therapeutic targets, they have been poorly investigated because of a lack of potent and selective chemical probes. In this study, we disclose that a potent, selective, reversible, and noncompetitive PTP4A inhibitor, JMS-053, markedly enhanced microvascular barrier function after exposure of endothelial cells to vascular endothelial growth factor or lipopolysaccharide. JMS-053 also blocked the concomitant increase in RhoA activation and loss of Rac1. In human ovarian cancer cells, JMS-053 impeded migration, disrupted spheroid growth, and decreased RhoA activity. Importantly, JMS-053 displayed anticancer activity in a murine xenograft model of drug resistant human ovarian cancer. These data demonstrate that PTP4A phosphatases can be targeted in both endothelial and ovarian cancer cells, and confirm that RhoA signaling cascades are regulated by the PTP4A family.

14.
Int J Biochem Cell Biol ; 96: 171-181, 2018 03.
Article in English | MEDLINE | ID: mdl-28943273

ABSTRACT

Protein tyrosine phosphatases (PTPs) undeniably have a central role in the development and progression of human cancers. Historically, however, PTPs have not been viewed as privileged drug targets, and progress on identifying potent, selective, and cell-active small molecule PTP inhibitors has suffered accordingly. This situation is rapidly changing, however, due to biochemical advances in the study of PTPs and recent small molecule screening campaigns, which have identified potent and mechanistically diverse lead structures. These compounds are facilitating the exploration of the fundamental cellular processes controlled by PTPs in cancers, and could form the inflection point for new therapeutic paradigms for the treatment of a range of cancers. Herein, we review recent advances in the discovery and biological annotation of cancer-relevant small molecule PTP inhibitors.


Subject(s)
Drug Delivery Systems/methods , Enzyme Inhibitors , Neoplasms , Protein Tyrosine Phosphatases , Animals , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/therapeutic use , Humans , Neoplasms/drug therapy , Neoplasms/enzymology , Neoplasms/genetics , Protein Tyrosine Phosphatases/antagonists & inhibitors , Protein Tyrosine Phosphatases/genetics , Protein Tyrosine Phosphatases/metabolism
15.
Org Biomol Chem ; 15(19): 4096-4114, 2017 May 16.
Article in English | MEDLINE | ID: mdl-28352916

ABSTRACT

The turnstile motion of two neighboring threonines sets up a dynamic side chain interplay that can accommodate both polar and apolar ligands in a small molecule allosteric protein binding site. A computational model based on SAR data and both X-ray and cryo-EM structures of the AAA ATPase p97 was used to analyze the effects of paired threonines at the inhibitor site. Specifically, the Thr side chain hydroxyl groups form a hydrogen bonding network that readily accommodates small, highly polar ligand substituents. Conversely, diametric rotation of the χ1 torsion by 150-180° orients the side chain ß-methyl groups into the binding cleft, creating a hydrophobic pocket that can accommodate small, apolar substituents. This motif was found to be critical for rationalizing the affinities of a structurally focused set of inhibitors of p97 covering a > 2000-fold variation in potencies, with a preference for either small-highly polar or small-apolar groups. The threonine turnstile motif was further validated by a PDB search that identified analogous binding modes in ligand interactions in PKB, as well as by an analysis of NMR structures demonstrating additional gear-like interactions between adjacent Thr pairs. Combined, these data suggest that the threonine turnstile motif may be a general feature of interest in protein binding pockets.


Subject(s)
Adenosine Triphosphatases/chemistry , Adenosine Triphosphatases/metabolism , Allosteric Site , Hydrophobic and Hydrophilic Interactions , Nuclear Proteins/chemistry , Nuclear Proteins/metabolism , Threonine , Amino Acid Motifs , Ligands , Models, Molecular , Protein Binding
16.
PLoS One ; 10(6): e0129264, 2015.
Article in English | MEDLINE | ID: mdl-26061731

ABSTRACT

There is an urgent need to develop novel treatments to counter Botulinum neurotoxin (BoNT) poisoning. Currently, the majority of BoNT drug development efforts focus on directly inhibiting the proteolytic components of BoNT, i.e. light chains (LC). Although this is a rational approach, previous research has shown that LCs are extremely difficult drug targets and that inhibiting multi-serotype BoNTs with a single LC inhibitor may not be feasible. An alternative approach would target neuronal pathways involved in intoxication/recovery, rather than the LC itself. Phosphorylation-related mechanisms have been implicated in the intoxication pathway(s) of BoNTs. However, the effects of phosphatase inhibitors upon BoNT activity in the physiological target of BoNTs, i.e. motor neurons, have not been investigated. In this study, a small library of phosphatase inhibitors was screened for BoNT antagonism in the context of mouse embryonic stem cell-derived motor neurons (ES-MNs). Four inhibitors were found to function as BoNT/A antagonists. Subsequently, we confirmed that these inhibitors protect against BoNT/A in a dose-dependent manner in human ES-MNs. Additionally, these compounds provide protection when administered in post-intoxication scenario. Importantly, the inhibitors were also effective against BoNT serotypes B and E. To the best of our knowledge, this is the first study showing phosphatase inhibitors as broad-spectrum BoNT antagonists.


Subject(s)
Botulinum Toxins/toxicity , Embryonic Stem Cells/drug effects , Enzyme Inhibitors/pharmacology , Motor Neurons/drug effects , Small Molecule Libraries/pharmacology , Animals , Botulinum Toxins/antagonists & inhibitors , Dose-Response Relationship, Drug , Drug Evaluation, Preclinical , Embryonic Stem Cells/metabolism , Humans , Mice , Motor Neurons/metabolism , Phosphoric Monoester Hydrolases/antagonists & inhibitors , SNARE Proteins/metabolism
17.
J Chem Phys ; 142(19): 194112, 2015 May 21.
Article in English | MEDLINE | ID: mdl-26001452

ABSTRACT

Binary particle coagulation can be modelled as the repeated random process of the combination of two particles to form a third. The kinetics may be represented by population rate equations based on a mean field assumption, according to which the rate of aggregation is taken to be proportional to the product of the mean populations of the two participants, but this can be a poor approximation when the mean populations are small. However, using the Poisson representation, it is possible to derive a set of rate equations that go beyond mean field theory, describing pseudo-populations that are continuous, noisy, and complex, but where averaging over the noise and initial conditions gives the mean of the physical population. Such an approach is explored for the simple case of a size-independent rate of coagulation between particles. Analytical results are compared with numerical computations and with results derived by other means. In the numerical work, we encounter instabilities that can be eliminated using a suitable "gauge" transformation of the problem [P. D. Drummond, Eur. Phys. J. B 38, 617 (2004)] which we show to be equivalent to the application of the Cameron-Martin-Girsanov formula describing a shift in a probability measure. The cost of such a procedure is to introduce additional statistical noise into the numerical results, but we identify an optimised gauge transformation where this difficulty is minimal for the main properties of interest. For more complicated systems, such an approach is likely to be computationally cheaper than Monte Carlo simulation.

18.
Neurotox Res ; 27(4): 384-98, 2015 May.
Article in English | MEDLINE | ID: mdl-25782580

ABSTRACT

Botulinum neurotoxins (BoNTs), the causative agents of botulism, are potent inhibitors of neurotransmitter release from motor neurons. There are currently no drugs to treat BoNT intoxication after the onset of the disease symptoms. In this study, we explored how modulation of key host pathways affects the process of BoNT intoxication in human motor neurons, focusing on Src family kinase (SFK) signaling. Motor neurons derived from human embryonic stem (hES) cells were treated with a panel of SFK inhibitors and intoxicated with BoNT serotypes A, B, or E (which are responsible for >95 % of human botulism cases). Subsequently, it was found that bosutinib, dasatinib, KX2-391, PP1, PP2, Src inhibitor-1, and SU6656 significantly antagonized all three of the serotypes. Furthermore, the data indicated that the treatment of hES-derived motor neurons with multiple SFK inhibitors increased the antagonistic effect synergistically. Mechanistically, the small molecules appear to inhibit BoNTs by targeting host pathways necessary for intoxication and not by directly inhibiting the toxins' proteolytic activity. Importantly, the identified inhibitors are all well-studied with some in clinical trials while others are FDA-approved drugs. Overall, this study emphasizes the importance of targeting host neuronal pathways, rather than the toxin's enzymatic components, to antagonize multiple BoNT serotypes in motor neurons.


Subject(s)
Botulinum Toxins/toxicity , Motor Neurons/drug effects , Motor Neurons/metabolism , Signal Transduction/drug effects , src-Family Kinases/antagonists & inhibitors , src-Family Kinases/metabolism , Embryonic Stem Cells/cytology , Humans , Proteolysis/drug effects , Serogroup
19.
Curr Top Med Chem ; 14(18): 2044-61, 2014.
Article in English | MEDLINE | ID: mdl-25335887

ABSTRACT

Botulinum neurotoxins (BoNTs) are endopeptidases that target motor neurons and block acetylcholine neurotransmitter release. This action results in the muscle paralysis that defines the disease botulism. To date, there are no FDA-approved therapeutics to treat BoNT-mediated paralysis after intoxication of the motor neuron. Importantly, the rationale for pursuing treatments to counter these toxins is driven by their potential misuse. Current drug discovery efforts have mainly focused on small molecules, peptides, and peptidomimetics that can directly and competitively inhibit BoNT light chain proteolytic activity. Although this is a rational approach, direct inhibition of the Zn(2+) metalloprotease activity has been elusive as demonstrated by the dearth of candidates undergoing clinical evaluation. Therefore, broadening the scope of viable targets beyond that of active site protease inhibitors represents an additional strategy that could move the field closer to the clinic. Here we review the rationale, and discuss the outcomes of earlier approaches and highlight potential new targets for BoNT inhibition. These include BoNT uptake and processing inhibitors, enzymatic inhibitors, and modulators of neuronal processes associated with toxin clearance, neurotransmitter potentiation, and other pathways geared towards neuronal recovery and repair.


Subject(s)
Antidotes/pharmacology , Botulinum Toxins, Type A/antagonists & inhibitors , Botulism/drug therapy , Peptidomimetics/pharmacology , Animals , Antibodies, Neutralizing/chemistry , Antibodies, Neutralizing/pharmacology , Antidotes/chemistry , Botulinum Toxins, Type A/chemistry , Botulinum Toxins, Type A/toxicity , Botulism/pathology , Chelating Agents/chemistry , Chelating Agents/pharmacology , Endocytosis/drug effects , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , High-Throughput Screening Assays , Humans , Motor Neurons/drug effects , Motor Neurons/pathology , Neurotransmitter Agents/agonists , Neurotransmitter Agents/metabolism , Peptidomimetics/chemistry , Small Molecule Libraries/chemistry , Small Molecule Libraries/pharmacology , Synaptic Transmission/drug effects
20.
J Med Chem ; 57(10): 4134-53, 2014 May 22.
Article in English | MEDLINE | ID: mdl-24742203

ABSTRACT

Significantly more potent second generation 4-amino-7-chloroquinoline (4,7-ACQ) based inhibitors of the botulinum neurotoxin serotype A (BoNT/A) light chain were synthesized. Introducing an amino group at the C(3) position of the cholate component markedly increased potency (IC50 values for such derivatives ranged from 0.81 to 2.27 µM). Two additional subclasses were prepared: bis(steroidal)-4,7-ACQ derivatives and bis(4,7-ACQ)cholate derivatives; both classes provided inhibitors with nanomolar-range potencies (e.g., the Ki of compound 67 is 0.10 µM). During BoNT/A challenge using primary neurons, select derivatives protected SNAP-25 by up to 89%. Docking simulations were performed to rationalize the compounds' in vitro potencies. In addition to specific residue contacts, coordination of the enzyme's catalytic zinc and expulsion of the enzyme's catalytic water were a consistent theme. With respect to antimalarial activity, the compounds provided better IC90 activities against chloroquine resistant (CQR) malaria than CQ, and seven compounds were more active than mefloquine against CQR strain W2.


Subject(s)
Aminoquinolines/chemical synthesis , Antimalarials/chemical synthesis , Botulinum Toxins, Type A/antagonists & inhibitors , Metalloproteases/drug effects , Plasmodium falciparum/drug effects , Protease Inhibitors/chemical synthesis , Aminoquinolines/pharmacology , Animals , Antimalarials/pharmacology , Chick Embryo , Chloroquine/pharmacology , Drug Resistance , Hep G2 Cells , Humans , Molecular Docking Simulation , Protease Inhibitors/pharmacology , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...