Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Cancer Res ; 14(7): 660-71, 2016 07.
Article in English | MEDLINE | ID: mdl-27097643

ABSTRACT

UNLABELLED: Adipose-derived stem cells (ASC) have received considerable attention in oncology because of the known direct link between obesity and cancer as well as the use of ASCs in reconstructive surgery after tumor ablation. Previous studies have documented how cancer cells commandeer ASCs to support their survival by altering extracellular matrix composition and stiffness, migration, and metastasis. This study focused on delineating the effects of ASCs and adipocytes on the self-renewal of stem/progenitor cells and hierarchy of breast epithelial cells. The immortalized breast epithelial cell line MCF10A, ductal carcinoma in situ (DCIS) cell lines MCF10DCIS.com and SUM225, and MCF10A-overexpressing SRC oncogene were examined using a mammosphere assay and flow cytometry for the effects of ASCs on their self-renewal and stem-luminal progenitor-differentiated cell surface marker profiles. Interestingly, ASCs promoted the self-renewal of all cell types except SUM225. ASC coculture or treatment with ASC conditioned media altered the number of CD49f(high)/EpCAM(low) basal/stem-like and CD49f(medium)/EpCAM(medium) luminal progenitor cells. Among multiple factors secreted by ASCs, IFNγ and hepatocyte growth factor (HGF) displayed unique actions on epithelial cell hierarchy. IFNγ increased stem/progenitor-like cells while simultaneously reducing the size of mammospheres, whereas HGF increased the size of mammospheres with an accompanying increase in luminal progenitor cells. ASCs expressed higher levels of HGF, whereas adipocytes expressed higher levels of IFNγ. As luminal progenitor cells are believed to be prone for transformation, IFNγ and HGF expression status of ASCs may influence susceptibility for developing breast cancer as well as on outcomes of autologous fat transplantation on residual/dormant tumor cells. IMPLICATIONS: This study suggests that the ratio of ASCs to adipocytes influences cancer cell hierarchy, which may impact incidence and progression. Mol Cancer Res; 14(7); 660-71. ©2016 AACR.


Subject(s)
Adipocytes/pathology , Breast Neoplasms/pathology , Breast/pathology , Stem Cells/pathology , Cell Differentiation/physiology , Cell Line , Cell Line, Tumor , Cell Proliferation/physiology , Cell Transformation, Neoplastic/pathology , Female , Humans
2.
Oncotarget ; 6(14): 12682-96, 2015 May 20.
Article in English | MEDLINE | ID: mdl-25926557

ABSTRACT

Breast cancer metastasizes to bone, visceral organs, and/or brain depending on the subtype, which may involve activation of a host organ-specific signaling network in metastatic cells. To test this possibility, we determined gene expression patterns in MDA-MB-231 cells and its mammary fat pad tumor (TMD-231), lung-metastasis (LMD-231), bone-metastasis (BMD-231), adrenal-metastasis (ADMD-231) and brain-metastasis (231-BR) variants. When gene expression between metastases was compared, 231-BR cells showed the highest gene expression difference followed by ADMD-231, LMD-231, and BMD-231 cells. Neuronal transmembrane proteins SLITRK2, TMEM47, and LYPD1 were specifically overexpressed in 231-BR cells. Pathway-analyses revealed activation of signaling networks that would enable cancer cells to adapt to organs of metastasis such as drug detoxification/oxidative stress response/semaphorin neuronal pathway in 231-BR, Notch/orphan nuclear receptor signals involved in steroidogenesis in ADMD-231, acute phase response in LMD-231, and cytokine/hematopoietic stem cell signaling in BMD-231 cells. Only NF-κB signaling pathway activation was common to all except BMD-231 cells. We confirmed NF-κB activation in 231-BR and in a brain metastatic variant of 4T1 cells (4T1-BR). Dimethylaminoparthenolide inhibited NF-κB activity, LYPD1 expression, and proliferation of 231-BR and 4T1-BR cells. Thus, transcriptome change enabling adaptation to host organs is likely one of the mechanisms associated with organ-specific metastasis and could potentially be targeted therapeutically.


Subject(s)
Breast Neoplasms/genetics , Breast Neoplasms/pathology , Gene Expression Regulation, Neoplastic/physiology , Neoplasm Metastasis/genetics , Signal Transduction/physiology , Transcriptome , Cell Line, Tumor , Electrophoretic Mobility Shift Assay , Female , Humans , Oligonucleotide Array Sequence Analysis , Reverse Transcriptase Polymerase Chain Reaction
3.
Cancer Res ; 74(16): 4270-81, 2014 Aug 15.
Article in English | MEDLINE | ID: mdl-24980554

ABSTRACT

Circulating microRNAs (miRNA) are emerging as important biomarkers of various diseases, including cancer. Intriguingly, circulating levels of several miRNAs are lower in patients with cancer compared with healthy individuals. In this study, we tested the hypothesis that a circulating miRNA might serve as a surrogate of the effects of cancer on miRNA expression or release in distant organs. Here we report that circulating levels of the muscle-enriched miR486 is lower in patients with breast cancer compared with healthy individuals and that this difference is replicated faithfully in MMTV-PyMT and MMTV-Her2 transgenic mouse models of breast cancer. In tumor-bearing mice, levels of miR486 were relatively reduced in muscle, where there was elevated expression of the miR486 target genes PTEN and FOXO1A and dampened signaling through the PI3K/AKT pathway. Skeletal muscle expressed lower levels of the transcription factor MyoD, which controls miR486 expression. Conditioned media (CM) obtained from MMTV-PyMT and MMTV-Her2/Neu tumor cells cultured in vitro were sufficient to elicit reduced levels of miR486 and increased PTEN and FOXO1A expression in C2C12 murine myoblasts. Cytokine analysis implicated tumor necrosis factor α (TNFα) and four additional cytokines as mediators of miR486 expression in CM-treated cells. Because miR486 is a potent modulator of PI3K/AKT signaling and the muscle-enriched transcription factor network in cardiac/skeletal muscle, our findings implicated TNFα-dependent miRNA circuitry in muscle differentiation and survival pathways in cancer.


Subject(s)
Breast Neoplasms/physiopathology , Heart/physiopathology , MicroRNAs/metabolism , Muscle, Skeletal/physiopathology , Animals , Breast Neoplasms/blood , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Cell Differentiation/physiology , Female , Humans , Male , Mammary Neoplasms, Experimental/genetics , Mammary Neoplasms, Experimental/metabolism , Mammary Neoplasms, Experimental/physiopathology , Mice , Mice, Transgenic , MicroRNAs/biosynthesis , MicroRNAs/blood , MicroRNAs/genetics , Muscle, Skeletal/metabolism , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL
...