Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
1.
Crit Care Med ; 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38832829

ABSTRACT

OBJECTIVE: Quantify hypotension burden using high-resolution continuous arterial blood pressure (ABP) data and determine its association with outcome after pediatric cardiac arrest. DESIGN: Retrospective observational study. SETTING: Academic PICU. PATIENTS: Children 18 years old or younger admitted with in-of-hospital or out-of-hospital cardiac arrest who had invasive ABP monitoring during postcardiac arrest care. INTERVENTIONS: None. MEASUREMENTS AND MAIN RESULTS: High-resolution continuous ABP was analyzed up to 24 hours after the return of circulation (ROC). Hypotension burden was the time-normalized integral area between mean arterial pressure (MAP) and fifth percentile MAP for age. The primary outcome was unfavorable neurologic status (pediatric cerebral performance category ≥ 3 with change from baseline) at hospital discharge. Mann-Whitney U tests compared hypotension burden, duration, and magnitude between favorable and unfavorable patients. Multivariable logistic regression determined the association of unfavorable outcomes with hypotension burden, duration, and magnitude at various percentile thresholds from the 5th through 50th percentile for age. Of 140 patients (median age 53 [interquartile range 11-146] mo, 61% male); 63% had unfavorable outcomes. Monitoring duration was 21 (7-24) hours. Using a MAP threshold at the fifth percentile for age, the median hypotension burden was 0.01 (0-0.11) mm Hg-hours per hour, greater for patients with unfavorable compared with favorable outcomes (0 [0-0.02] vs. 0.02 [0-0.27] mm Hg-hr per hour, p < 0.001). Hypotension duration and magnitude were greater for unfavorable compared with favorable patients (0.03 [0-0.77] vs. 0.71 [0-5.01]%, p = 0.003; and 0.16 [0-1.99] vs. 2 [0-4.02] mm Hg, p = 0.001). On logistic regression, a 1-point increase in hypotension burden below the fifth percentile for age (equivalent to 1 mm Hg-hr of burden per hour of recording) was associated with increased odds of unfavorable outcome (adjusted odds ratio [aOR] 14.8; 95% CI, 1.1-200; p = 0.040). At MAP thresholds of 10th-50th percentiles for age, MAP burden below the threshold was greater in unfavorable compared with favorable patients in a dose-dependent manner. CONCLUSIONS: High-resolution continuous ABP data can be used to quantify hypotension burden after pediatric cardiac arrest. The burden, duration, and magnitude of hypotension are associated with unfavorable neurologic outcomes.

2.
Resuscitation ; 196: 110128, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38280508

ABSTRACT

AIM: Cerebral blood flow (CBF) is dysregulated after cardiac arrest. It is unknown if post-arrest CBF is associated with outcome. We aimed to determine the association of CBF derived from arterial spin labelling (ASL) MRI with outcome after pediatric cardiac arrest. METHODS: Retrospective observational study of patients ≤18 years who had a clinically obtained brain MRI within 7 days of cardiac arrest between June 2005 and December 2019. Primary outcome was unfavorable neurologic status: change in Pediatric Cerebral Performance Category (PCPC) ≥1 from pre-arrest that resulted in hospital discharge PCPC 3-6. We measured CBF in whole brain and regions of interest (ROIs) including frontal, parietal, and temporal cortex, caudate, putamen, thalamus, and brainstem using pulsed ASL. We compared CBF between outcome groups using Wilcoxon Rank-Sum and performed logistic regression to associate each region's CBF with outcome, accounting for age, sex, and time between arrest and MRI. RESULTS: Forty-eight patients were analyzed (median age 2.8 [IQR 0.95, 8.8] years, 65% male). Sixty-nine percent had unfavorable outcome. Time from arrest to MRI was 4 [3,5] days and similar between outcome groups (p = 0.39). Whole brain median CBF was greater for unfavorable compared to favorable groups (28.3 [20.9,33.0] vs. 19.6 [15.3,23.1] ml/100 g/min, p = 0.007), as was CBF in individual ROIs. Greater CBF in the whole brain and individual ROIs was associated with higher odds of unfavorable outcome after controlling for age, sex, and days from arrest to MRI (aOR for whole brain 19.08 [95% CI 1.94, 187.41]). CONCLUSION: CBF measured 3-5 days after pediatric cardiac arrest by ASL MRI was independently associated with unfavorable outcome.


Subject(s)
Heart Arrest , Magnetic Resonance Imaging , Humans , Child , Male , Child, Preschool , Female , Spin Labels , Magnetic Resonance Imaging/methods , Heart Arrest/therapy , Brain/diagnostic imaging , Cerebrovascular Circulation/physiology
3.
Environ Manage ; 69(6): 1118-1136, 2022 06.
Article in English | MEDLINE | ID: mdl-35352198

ABSTRACT

Wet montane meadows are an important component of the Sierra Nevada, CA ecosystem that provide diverse ecological services when in functional condition. Efforts are underway to restore meadows that have been degraded from past and historic land uses. Livestock grazing is a common land use in meadows with the potential to impact Sierra meadow ecology and may be a critical determinant of restoration success. We used a systematic literature review (SLR) method to identify, review, and synthesize scientific literature about the ecological effects of livestock grazing on Sierra meadow ecology resource areas, including hydrologic function, water quality, plants, soil, fens, and fish and wildlife species. We found 47 studies that matched our search criteria for inclusion in this SLR. Livestock grazing was associated with predominantly negative effects for each resource area reviewed, suggesting that achieving functional ecological condition in Sierra meadows that are currently used for livestock grazing may be challenging. Nevertheless, there was some evidence for compatibility with certain resource areas and certain management regimes. We discuss livestock management options, ecological objectives, and research questions that emerge from the literature to help inform meadow restoration and management.


Subject(s)
Ecosystem , Livestock , Animals , Conservation of Natural Resources/methods , Grassland , Soil
4.
Resuscitation ; 168: 110-118, 2021 11.
Article in English | MEDLINE | ID: mdl-34600027

ABSTRACT

AIM: Evaluate cerebrovascular autoregulation (CAR) using near-infrared spectroscopy (NIRS) after pediatric cardiac arrest and determine if deviations from CAR-derived optimal mean arterial pressure (MAPopt) are associated with outcomes. METHODS: CAR was quantified by a moving, linear correlation between time-synchronized mean arterial pressure (MAP) and regional cerebral oxygenation, called cerebral oximetry index (COx). MAPopt was calculated using a multi-window weighted algorithm. We calculated burden (magnitude and duration) of MAP less than 5 mmHg below MAPopt (MAPopt - 5), as the area between MAP and MAPopt - 5 curves using numerical integration and normalized as percentage of monitoring duration. Unfavorable outcome was defined as death or pediatric cerebral performance category (PCPC) at hospital discharge ≥3 with ≥1 change from baseline. Univariate logistic regression tested association between burden of MAP less than MAPopt - 5 and outcome. RESULTS: Thirty-four children (median age 2.9 [IQR 1.5,13.4] years) were evaluated. Median COx in the first 24 h post-cardiac arrest was 0.06 [0,0.20]; patients spent 27% [19,43] of monitored time with COx ≥ 0.3. Patients with an unfavorable outcome (n = 24) had a greater difference between MAP and MAPopt - 5 (13 [11,19] vs. 9 [8,10] mmHg, p = 0.01) and spent more time with MAP below MAPopt - 5 (38% [26,61] vs. 24% [14,28], p = 0.03). Patients with unfavorable outcome had a higher burden of MAP less than MAPopt - 5 than patients with favorable outcome in the first 24 h post-arrest (187 [107,316] vs. 62 [43,102] mmHg × Min/Hr; OR 4.93 [95% CI 1.16-51.78]). CONCLUSIONS: Greater burden of MAP below NIRS-derived MAPopt - 5 during the first 24 h after cardiac arrest was associated with unfavorable outcomes.


Subject(s)
Cerebrovascular Circulation , Heart Arrest , Arterial Pressure , Blood Pressure , Child , Child, Preschool , Heart Arrest/therapy , Humans , Oximetry
5.
Sci Rep ; 10(1): 5483, 2020 03 26.
Article in English | MEDLINE | ID: mdl-32218483

ABSTRACT

We compared the vulnerability of a Nearctic-Neotropical migrant (Swainson's Thrush, Catharus ustulatus) for three geographically-defined breeding populations in California by linking breeding and wintering regions, estimating migration distances, and quantifying relative forest loss. Using data from light-level geolocator and GPS tags, we found that breeding birds from the relatively robust coastal population in the San Francisco Bay area wintered predominantly in western Mexico (n = 18), whereas the far rarer breeding birds from two inland populations that occur near one another in the Sierra Nevada and southern Cascades mountain ranges migrated to farther wintering destinations, with birds from the Lassen region (n = 5) predominantly going to Central America and birds from the Tahoe region (n = 7) predominantly to South America. Landscape-level relative forest loss was greater in the breeding and wintering regions of the two Cascade-Sierra populations than those of coastal birds. Longer migration distances and greater exposure to recent forest loss suggest greater current vulnerability of Cascade-Sierra birds. Our results demonstrate that for some species, quantifying migration distances and destinations across relatively small distances among breeding populations (in this case, 140-250 km apart) can identify dramatically different vulnerabilities that need to be considered in conservation planning.


Subject(s)
Animal Migration/physiology , Songbirds/physiology , Animals , Arctic Regions , Breeding , California , Climate Change , Conservation of Natural Resources , Female , Forests , Geographic Information Systems , Male , Seasons , Tropical Climate
6.
Ecol Appl ; 29(2): e01848, 2019 03.
Article in English | MEDLINE | ID: mdl-30786092

ABSTRACT

Birds respond rapidly to changes in both habitat and climate conditions and thus are good indicators of the ecological effects of a changing climate, which may include warmer temperatures, changing habitat conditions, and increased frequency and magnitude of extreme events like drought. We investigated how a widespread tree mortality event concurrent with a severe drought influenced the avian community of the Sierra Nevada mountain range in California. We assessed and compared the separate effects of climate stresses and altered habitat conditions on the avian community and used this information to evaluate the changes that are likely to occur in the near future. We built tree mortality maps from freely available Landsat imagery with Google Earth Engine. We analyzed avian point counts from 2010 to 2016 in the southern Sierra Nevada, to model temperature, water deficit, and tree mortality effects on the abundances of 45 bird species, and then used these models to project abundances into the future based on three climate projections. A large portion of the avian community, 47%, had a positive relationship with temperature increase, compared to 20% that responded negatively. More species (36%) declined with drier conditions than increased (29%). More species declined in response to high tree mortality (36%) than increased (9%). A preponderance of species adapted to colder temperatures (higher elevation) had negative responses to high tree mortality and water deficit, but positive responses to increasing temperature. We projected the highest total bird abundances in the future under the warmest climate scenario that we considered, but habitat modification (e.g., tree mortality) and water deficit could offset the positive influence of temperature for many species. As other studies have shown, climate warming may lead to substantial but idiosyncratic effects on wildlife species that could result in community composition shifts. We conclude that future climate conditions may not have a universally negative effect on biodiversity in the Sierra Nevada, but probable vegetation changes and increased likelihood of extreme events such as drought should be incorporated into climate-smart forest and wildlife management decisions.


Subject(s)
Droughts , Trees , Animals , Birds , California , Climate Change , Nevada
7.
BMC Med Educ ; 18(1): 152, 2018 Jun 27.
Article in English | MEDLINE | ID: mdl-29945579

ABSTRACT

BACKGROUND: Mobile learning (mLearning) devices (such as tablets and smartphones) are increasingly part of the clinical environment but there is a limited and somewhat conflicting literature regarding the impact of such devices in the clinical learning environment. This study aims to: assess the impact of mLearning devices in the clinical learning environment on medical students' studying habits, attitudes towards mobile device supported learning; and the perceived reaction of clinicians and patients to the use of these devices as part of learning in the clinical setting. METHODS: Over three consecutive academic years, 18 cohorts of medical students (total n = 275) on a six-week rotation at a large teaching hospital in London were supplied with mLearning devices (iPad mini) to support their placement-based learning. Feedback on their experiences and perceptions was collected via pre- and post-use questionnaires. RESULTS: The results suggest mLearning devices have a positive effect on the students' perceived efficiency of working, while experience of usage not only confirmed pre-existing positive opinions about devices but also disputed some expected limitations associated with mLearning devices in the clinical workplace. Students were more likely to use devices in 'down-time' than as part of their clinical learning. As anticipated, both by users and from the literature, universal internet access was a major limitation to device use. The results were inconclusive about the student preference for device provision versus supporting a pre-owned device. CONCLUSION: M-learning devices can have a positive impact on the learning experiences medical students during their clinical attachments. The results supported the feasibility of providing mLearning devices to support learning in the clinical environment. However, universal internet is a fundamental limitation to optimal device utilisation.


Subject(s)
Attitude of Health Personnel , Cell Phone , Computers, Handheld , Education, Medical/methods , Learning , Students, Medical/psychology , Adult , Female , Hospitals, Teaching , Humans , London , Male , Perception , Surveys and Questionnaires , Young Adult
8.
Mol Ther Nucleic Acids ; 6: 221-232, 2017 Mar 17.
Article in English | MEDLINE | ID: mdl-28325288

ABSTRACT

Tumor cells express a number of immunosuppressive molecules that can suppress anti-tumor immune responses. Efficient delivery of small interfering RNAs to treat a wide range of diseases including cancers remains a challenge. Retroviral replicating vectors (RRV) can be used to stably and selectively introduce genetic material into cancer cells. Here, we designed RRV to express shRNA (RRV-shPDL1) or microRNA30-derived shRNA (RRV-miRPDL1) using Pol II or Pol III promoters to downregulate PDL1 in human cancer cells. We also designed RRV expressing cytosine deaminase (yCD2) and miRPDL1 for potential combinatorial therapy. Among various configurations tested, we showed that RRV-miRPDL1 vectors with Pol II or Pol III promoter replicated efficiently and exhibited sustained downregulation of PDL1 protein expression by more than 75% in human cancer cell lines with high expression of PDL1. Immunologic effects of RRV-miRPDL1 were assessed by a trans-suppression lymphocyte assay. In vitro data showed downregulation of PDL1+ tumor cells restored activation of CD8+ T cells and bio-equivalency compared to anti-PDL1 antibody treatment. These results suggest RRV-miRPDL1 may be an alternative therapeutic approach to enhance anti-tumor immunity by overcoming PDL1-induced immune suppression from within cancer cells and this approach may also be applicable to other cancer targets.

9.
PLoS One ; 11(11): e0166784, 2016.
Article in English | MEDLINE | ID: mdl-27898690

ABSTRACT

Exposure of the brain to general anesthesia during early infancy may adversely affect its neural and cognitive development. The mechanisms mediating this are complex, incompletely understood and may be sexually dimorphic, but include developmentally inappropriate apoptosis, inflammation and a disruption to cognitively salient gene expression. We investigated the effects of a 6h isoflurane exposure on cell death, microglial activation and gene expression in the male neonatal piglet brain. Piglets (n = 6) were randomised to: (i) naive controls or (ii) 6h isoflurane. Cell death (TUNEL and caspase-3) and microglial activation were recorded in 7 brain regions. Changes in gene expression (microarray and qPCR) were assessed in the cingulate cortex. Electroencephalography (EEG) was recorded throughout. Isoflurane anesthesia induced significant increases in cell death in the cingulate and insular cortices, caudate nucleus, thalamus, putamen, internal capsule, periventricular white matter and hippocampus. Dying cells included both neurons and oligodendrocytes. Significantly, microglial activation was observed in the insula, pyriform, hippocampus, internal capsule, caudate and thalamus. Isoflurane induced significant disruption to the expression of 79 gene transcripts, of these 26 are important for the control of transcription and 23 are important for the mediation of neural plasticity, memory formation and recall. Our observations confirm that isoflurane increases apoptosis and inflammatory responses in the neonatal piglet brain but also suggests novel additional mechanisms by which isoflurane may induce adverse neural and cognitive development by disrupting the expression of genes mediating activity dependent development of neural circuits, the predictive adaptive responses of the brain, memory formation and recall.


Subject(s)
Brain/drug effects , Cognition/drug effects , Gene Expression Regulation, Developmental/drug effects , Isoflurane/pharmacology , Microglia/cytology , Microglia/drug effects , Anesthetics, General/pharmacology , Animals , Animals, Newborn , Brain/cytology , Brain/growth & development , Brain/physiology , Cell Death/drug effects , Gray Matter/cytology , Gray Matter/drug effects , Gray Matter/growth & development , Gray Matter/physiology , Male , Swine , Time Factors , White Matter/cytology , White Matter/drug effects , White Matter/growth & development , White Matter/physiology
10.
PLoS One ; 10(4): e0123778, 2015.
Article in English | MEDLINE | ID: mdl-25905920

ABSTRACT

Whether by design or default, single species management often serves as an umbrella for species with similar habitat requirements. In recent decades the focus of National Forest management in the Sierra Nevada of California has shifted towards increasing closed canopy mature forest conditions through the protection of areas occupied by the California Spotted Owl (Strix occidentalis occidentalis). To evaluate the implications of these habitat changes and the potential umbrella resulting from a system of owl reserves on the broader avian community, we estimated occupancy of birds inside and outside of Spotted Owl Home Range Core Areas in northeastern California. We used point count data in a multi-species hierarchical Bayesian model incorporating the detection history of 81 species over a two-year time period (2005-2006). A small set of vegetation cover and topography covariates were included in the model to account for broad differences in habitat conditions, as well as a term identifying whether or not a site was within a Core Area. Seventeen species had a negative Core Area effect, seven had a positive effect, and the rest were not significant. Estimated species richness was significantly different with 23.1 species per 100 m radius circle outside Core Areas and 21.7 inside Core Areas. The majority of the species negatively associated with Core Areas are tied to early successional and other disturbance-dependent habitats. Conservation and climate vulnerability rankings were mixed. On average we found higher scores (greater risk) for the species positively associated with Core Areas, but a larger number of species with the highest scores were negatively associated with Core Areas. We discuss the implications for managing the Sierra Nevada ecosystem and illustrate the role of monitoring broader suites of species in guiding management of large complex ecosystems.


Subject(s)
Conservation of Natural Resources , Strigiformes , Animals , California , Ecosystem
11.
Hum Gene Ther ; 26(2): 82-93, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25419577

ABSTRACT

Toca 511 (vocimagene amiretrorepvec), a nonlytic, amphotropic retroviral replicating vector (RRV), encodes and delivers a functionally optimized yeast cytosine deaminase (CD) gene to tumors. In orthotopic glioma models treated with Toca 511 and 5-fluorocytosine (5-FC) the CD enzyme within infected cells converts 5-FC to 5-fluorouracil (5-FU), resulting in tumor killing. Toca 511, delivered locally either by intratumoral injection or by injection into the resection bed, in combination with subsequent oral extended-release 5-FC (Toca FC), is under clinical investigation in patients with recurrent high-grade glioma (HGG). If feasible, intravenous administration of vectors is less invasive, can easily be repeated if desired, and may be applicable to other tumor types. Here, we present preclinical data that support the development of an intravenous administration protocol. First we show that intravenous administration of Toca 511 in a preclinical model did not lead to widespread or uncontrolled replication of the RVV. No, or low, viral DNA was found in the blood and most of the tissues examined 180 days after Toca 511 administration. We also show that RRV administered intravenously leads to efficient infection and spread of the vector carrying the green fluorescent protein (GFP)-encoding gene (Toca GFP) through tumors in both immune-competent and immune-compromised animal models. However, initial vector localization within the tumor appeared to depend on the mode of administration. Long-term survival was observed in immune-competent mice when Toca 511 was administered intravenously or intracranially in combination with 5-FC treatment, and this combination was well tolerated in the preclinical models. Enhanced survival could also be achieved in animals with preexisting immune response to vector, supporting the potential for repeated administration. On the basis of these and other supporting data, a clinical trial investigating intravenous administration of Toca 511 in patients with recurrent HGG is currently open and enrolling.


Subject(s)
Brain Neoplasms/therapy , Cytosine Deaminase/genetics , Fungal Proteins/genetics , Genetic Therapy/methods , Genetic Vectors/pharmacokinetics , Glioma/therapy , Retroviridae/genetics , Animals , Antibodies, Neutralizing/analysis , Antimetabolites/pharmacology , Brain Neoplasms/genetics , Brain Neoplasms/mortality , Brain Neoplasms/pathology , Clinical Trials as Topic , Cytosine Deaminase/metabolism , Cytosine Deaminase/pharmacokinetics , Disease Models, Animal , Drug Evaluation, Preclinical , Flucytosine/pharmacology , Fungal Proteins/metabolism , Fungal Proteins/pharmacokinetics , Gene Expression , Genes, Reporter , Genetic Vectors/administration & dosage , Genetic Vectors/chemistry , Glioma/genetics , Glioma/mortality , Glioma/pathology , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Humans , Injections, Intravenous , Mice , Mice, Nude , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Recombinant Proteins/pharmacokinetics , Retroviridae/immunology , Survival Analysis , Tissue Distribution
12.
Mol Ther Methods Clin Dev ; 1: 14024, 2014.
Article in English | MEDLINE | ID: mdl-26015967

ABSTRACT

Toca 511 is a novel retroviral replicating vector, encoding a modified yeast cytosine deaminase, administered to recurrent high grade glioma patients in Phase 1 trials by stereotactic, transcranial injection into the tumor or into the walls of the resection cavity. A key issue, with little published data, is vector biocompatibility with agents likely to be encountered in a neurosurgical setting. We tested biocompatibility of Toca 511 with: delivery devices; MRI contrast agents, including ProHance supporting coinjection for real time MRI-guided intratumoral delivery; hemostatic agents; biofluids (blood and cerebrospinal fluid); potential adjuvants; and a needleless vial adapter that reduces risk of accidental needle sticks. Toca 511 is stable upon thawing at ambient temperature for at least 6 hours, allowing sufficient time for administration, and its viability is not reduced in the presence of: stainless steel and silica-based delivery devices; the potential MRI contrast agent, Feraheme; ProHance at several concentrations; the hemostatic agent SURGIFOAM; blood; cerebrospinal fluid; and the needleless vial adapter. Toca 511 is not compatible with the hemostatic agent SURGICEL or with extended exposures to titanium-based biopsy needles.

13.
Mol Ther ; 20(9): 1689-98, 2012 09.
Article in English | MEDLINE | ID: mdl-22547150

ABSTRACT

Retroviral replicating vectors (RRVs) are a nonlytic alternative to oncolytic replicating viruses as anticancer agents, being selective both for dividing cells and for cells that have defects in innate immunity and interferon responsiveness. Tumor cells fit both these descriptions. Previous publications have described a prototype based on an amphotropic murine leukemia virus (MLV), encoding yeast cytosine deaminase (CD) that converts the prodrug 5-fluorocytosine (5-FC) to the potent anticancer drug, 5-fluorouracil (5-FU) in an infected tumor. We report here the selection of one lead clinical candidate based on a general design goal to optimize the genetic stability of the virus and the CD activity produced by the delivered transgene. Vectors were tested for titer, genetic stability, CD protein and enzyme activity, ability to confer susceptibility to 5-FC, and preliminary in vivo antitumor activity and stability. One vector, Toca 511, (aka T5.0002) encoding an optimized CD, shows a threefold increased specific activity in infected cells over infection with the prototype RRV and shows markedly higher genetic stability. Animal testing demonstrated that Toca 511 replicates stably in human tumor xenografts and, after 5-FC administration, causes complete regression of such xenografts. Toca 511 (vocimagene amiretrorepvec) has been taken forward to preclinical and clinical trials.


Subject(s)
Genetic Therapy/methods , Leukemia Virus, Murine/genetics , Neoplasms, Experimental/therapy , Animals , Antineoplastic Agents/metabolism , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Cytosine Deaminase/genetics , Cytosine Deaminase/metabolism , Flucytosine/metabolism , Flucytosine/pharmacology , Fluorouracil/metabolism , Fluorouracil/pharmacology , Fungal Proteins/genetics , Fungal Proteins/metabolism , Gene Expression , Genetic Vectors , Humans , Mice , Neoplasm Transplantation , Neoplasms, Experimental/genetics , Neoplasms, Experimental/pathology , Prodrugs/metabolism , Prodrugs/pharmacology , RNA Stability , Rats , Transgenes
14.
Neuro Oncol ; 14(2): 145-59, 2012 Feb.
Article in English | MEDLINE | ID: mdl-22070930

ABSTRACT

Patients with the most common and aggressive form of high-grade glioma, glioblastoma multiforme, have poor prognosis and few treatment options. In 2 immunocompetent mouse brain tumor models (CT26-BALB/c and Tu-2449-B6C3F1), we showed that a nonlytic retroviral replicating vector (Toca 511) stably delivers an optimized cytosine deaminase prodrug activating gene to the tumor lesion and leads to long-term survival after treatment with 5-fluorocytosine (5-FC). Survival benefit is dose dependent for both vector and 5-FC, and as few as 4 cycles of 5-FC dosing after Toca 511 therapy provides significant survival advantage. In the virally permissive CT26-BALB/c model, spread of Toca 511 to other tissues, particularly lymphoid tissues, is detectable by polymerase chain reaction (PCR) over a wide range of levels. In the Tu-2449-B6C3F1 model, Toca 511 PCR signal in nontumor tissues is much lower, spread is not always observed, and when observed, is mainly detected in lymphoid tissues at low levels. The difference in vector genome spread correlates with a more effective antiviral restriction element, APOBEC3, present in the B6C3F1 mice. Despite these differences, neither strain showed signs of treatment-related toxicity. These data support the concept that, in immunocompetent animals, a replicating retroviral vector carrying a prodrug activating gene (Toca 511) can spread through a tumor mass, leading to selective elimination of the tumor after prodrug administration, without local or systemic pathology. This concept is under investigation in an ongoing phase I/II clinical trial of Toca 511 in combination with 5-FC in patients with recurrent high-grade glioma (www.clinicaltrials.gov NCT01156584).


Subject(s)
Brain Neoplasms/therapy , Flucytosine/therapeutic use , Fluorouracil/metabolism , Genetic Vectors , Glioma/therapy , Leukemia Virus, Murine/genetics , Animals , Brain Neoplasms/drug therapy , Brain Neoplasms/mortality , Combined Modality Therapy , Disease Models, Animal , Female , Flucytosine/metabolism , Flucytosine/pharmacology , Fluorouracil/pharmacology , Genetic Therapy , Genetic Vectors/administration & dosage , Glioma/drug therapy , Glioma/genetics , Glioma/mortality , Mice , Mice, Inbred BALB C , Survival Analysis , Tumor Cells, Cultured
15.
Ann Neurol ; 70(5): 790-804, 2011 Nov.
Article in English | MEDLINE | ID: mdl-22162061

ABSTRACT

OBJECTIVE: Gene expression studies in peripheral tissues from patients with neurodegenerative disorders can provide insights into disease pathogenesis, and identify potential biomarkers, an important goal of translational research in neurodegeneration. Friedreich Ataxia (FRDA) is a chronic neurodegenerative disease caused by reduced transcription of frataxin, a ubiquitously expressed protein. We studied in vitro lymphocytes from FRDA patients and carriers to identify a peripheral gene expression phenotype. Peripheral biomarkers related to disease status would be extremely valuable for assessing drug efficacy and could provide new pathophysiological insights. METHODS: We characterized the gene expression profiles in peripheral blood mononuclear cells (PBMCs) from FRDA patients, compared with controls and related carriers. Cells were studied both before and after in vitro treatment with compounds that increase frataxin levels. Quantitative real-time polymerase chain reaction and additional microarrays were used to confirm a core set of genes in multiple independent series. RESULTS: We identified a subset of genes changed in cells from patients with pathological frataxin deficiency, and a core set of these genes were confirmed in independent series. Changes in gene expression were related to the mitochondria, lipid metabolism, cell cycle, and DNA repair, consistent with FRDA's known pathophysiology. We evaluated the in vitro effect of multiple compounds (histone deacetylase inhibitors) on this putative biomarker set, and found that this biochemical phenotype was ameliorated in accordance with drug efficacy. INTERPRETATION: Frataxin downregulation is associated with robust changes in gene expression in PBMCs, providing pathogenetic insights and a core subset of genes that, if verified in vivo, could be used as a peripheral biomarker.


Subject(s)
Friedreich Ataxia/metabolism , Iron-Binding Proteins/drug effects , Leukocytes, Mononuclear/metabolism , Adult , Cell Culture Techniques , Female , Friedreich Ataxia/genetics , Gene Expression , Humans , Iron-Binding Proteins/genetics , Leukocytes, Mononuclear/cytology , Male , Phenotype , Real-Time Polymerase Chain Reaction , Frataxin
16.
Proc Natl Acad Sci U S A ; 105(40): 15564-9, 2008 Oct 07.
Article in English | MEDLINE | ID: mdl-18829438

ABSTRACT

Transcriptional dysregulation has emerged as a core pathologic feature of Huntington's disease (HD), one of several triplet-repeat disorders characterized by movement deficits and cognitive dysfunction. Although the mechanisms contributing to the gene expression deficits remain unknown, therapeutic strategies have aimed to improve transcriptional output via modulation of chromatin structure. Recent studies have demonstrated therapeutic effects of commercially available histone deacetylase (HDAC) inhibitors in several HD models; however, the therapeutic value of these compounds is limited by their toxic effects. Here, beneficial effects of a novel pimelic diphenylamide HDAC inhibitor, HDACi 4b, in an HD mouse model are reported. Chronic oral administration of HDACi 4b, beginning after the onset of motor deficits, significantly improved motor performance, overall appearance, and body weight of symptomatic R6/2(300Q) transgenic mice. These effects were associated with significant attenuation of gross brain-size decline and striatal atrophy. Microarray studies revealed that HDACi 4b treatment ameliorated, in part, alterations in gene expression caused by the presence of mutant huntingtin protein in the striatum, cortex, and cerebellum of R6/2(300Q) transgenic mice. For selected genes, HDACi 4b treatment reversed histone H3 hypoacetylation observed in the presence of mutant huntingtin, in association with correction of mRNA expression levels. These findings suggest that HDACi 4b, and possibly related HDAC inhibitors, may offer clinical benefit for HD patients and provide a novel set of potential biomarkers for clinical assessment.


Subject(s)
Anilides/pharmacology , Enzyme Inhibitors/pharmacology , Histone Deacetylase Inhibitors , Huntington Disease/genetics , Transcription, Genetic , Anilides/administration & dosage , Anilides/chemical synthesis , Animals , Chromatin Immunoprecipitation , Disease Models, Animal , Enzyme Inhibitors/administration & dosage , Enzyme Inhibitors/chemical synthesis , Histone Deacetylases/metabolism , Huntington Disease/drug therapy , Male , Mice , Mice, Transgenic , Neuroprotective Agents/administration & dosage , Neuroprotective Agents/chemical synthesis , Neuroprotective Agents/pharmacology , Phenotype , Transcription, Genetic/drug effects
17.
PLoS One ; 3(4): e1958, 2008 Apr 09.
Article in English | MEDLINE | ID: mdl-18463734

ABSTRACT

BACKGROUND: Friedreich ataxia, an autosomal recessive neurodegenerative and cardiac disease, is caused by abnormally low levels of frataxin, an essential mitochondrial protein. All Friedreich ataxia patients carry a GAATTC repeat expansion in the first intron of the frataxin gene, either in the homozygous state or in compound heterozygosity with other loss-of-function mutations. The GAA expansion inhibits frataxin expression through a heterochromatin-mediated repression mechanism. Histone modifications that are characteristic of silenced genes in heterochromatic regions occur at expanded alleles in cells from Friedreich ataxia patients, including increased trimethylation of histone H3 at lysine 9 and hypoacetylation of histones H3 and H4. METHODOLOGY/PRINCIPAL FINDINGS: By chromatin immunoprecipitation, we detected the same heterochromatin marks in homozygous mice carrying a (GAA)(230) repeat in the first intron of the mouse frataxin gene (KIKI mice). These animals have decreased frataxin levels and, by microarray analysis, show significant gene expression changes in several tissues. We treated KIKI mice with a novel histone deacetylase inhibitor, compound 106, which substantially increases frataxin mRNA levels in cells from Friedreich ataxia individuals. Treatment increased histone H3 and H4 acetylation in chromatin near the GAA repeat and restored wild-type frataxin levels in the nervous system and heart, as determined by quantitative RT-PCR and semiquantitative western blot analysis. No toxicity was observed. Furthermore, most of the differentially expressed genes in KIKI mice reverted towards wild-type levels. CONCLUSIONS/SIGNIFICANCE: Lack of acute toxicity, normalization of frataxin levels and of the transcription profile changes resulting from frataxin deficiency provide strong support to a possible efficacy of this or related compounds in reverting the pathological process in Friedreich ataxia, a so far incurable neurodegenerative disease.


Subject(s)
Disease Models, Animal , Enzyme Inhibitors/therapeutic use , Friedreich Ataxia/drug therapy , Histone Deacetylase Inhibitors , Iron-Binding Proteins/genetics , Iron-Binding Proteins/metabolism , Acetylation/drug effects , Animals , Cerebellum/drug effects , Cerebellum/metabolism , Chromatin/metabolism , Enzyme Inhibitors/pharmacology , Epigenesis, Genetic/drug effects , Gene Expression Profiling , Histones/metabolism , Introns/genetics , Mice , Myocardium/metabolism , Protein Processing, Post-Translational/drug effects , RNA, Messenger/genetics , RNA, Messenger/metabolism , Frataxin
18.
Nat Chem Biol ; 2(10): 551-8, 2006 Oct.
Article in English | MEDLINE | ID: mdl-16921367

ABSTRACT

Expansion of GAA x TTC triplets within an intron in FXN (the gene encoding frataxin) leads to transcription silencing, forming the molecular basis for the neurodegenerative disease Friedreich's ataxia. Gene silencing at expanded FXN alleles is accompanied by hypoacetylation of histones H3 and H4 and trimethylation of histone H3 at Lys9, observations that are consistent with a heterochromatin-mediated repression mechanism. We describe the synthesis and characterization of a class of histone deacetylase (HDAC) inhibitors that reverse FXN silencing in primary lymphocytes from individuals with Friedreich's ataxia. We show that these molecules directly affect the histones associated with FXN, increasing acetylation at particular lysine residues on histones H3 and H4 (H3K14, H4K5 and H4K12). This class of HDAC inhibitors may yield therapeutics for Friedreich's ataxia.


Subject(s)
Anilides/pharmacology , Enzyme Inhibitors/pharmacology , Friedreich Ataxia/genetics , Gene Silencing/drug effects , Histone Deacetylase Inhibitors , Acetylation , Alleles , Anilides/chemical synthesis , Anilides/chemistry , Cell Line , Cells, Cultured , Dose-Response Relationship, Drug , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/therapeutic use , Friedreich Ataxia/drug therapy , Gene Expression Regulation/drug effects , HeLa Cells , Heterochromatin/drug effects , Heterochromatin/genetics , Histones/chemistry , Histones/drug effects , Histones/metabolism , Humans , Iron-Binding Proteins/biosynthesis , Iron-Binding Proteins/drug effects , Molecular Structure , RNA, Messenger/drug effects , RNA, Messenger/genetics , Transcription, Genetic/drug effects , Frataxin
19.
Proc Natl Acad Sci U S A ; 103(31): 11497-502, 2006 Aug 01.
Article in English | MEDLINE | ID: mdl-16857735

ABSTRACT

The DNA abnormality found in 98% of Friedreich's ataxia (FRDA) patients is the unstable hyperexpansion of a GAA.TTC triplet repeat in the first intron of the frataxin gene. Expanded GAA.TTC repeats result in decreased transcription and reduced levels of frataxin protein in affected individuals. Beta-alanine-linked pyrrole-imidazole polyamides bind GAA.TTC tracts with high affinity and disrupt the intramolecular DNA.DNA-associated region of the sticky-DNA conformation formed by long GAA.TTC repeats. Fluorescent polyamide-Bodipy conjugates localize in the nucleus of a lymphoid cell line derived from a FRDA patient. The synthetic ligands increase transcription of the frataxin gene in cell culture, resulting in increased levels of frataxin protein. DNA microarray analyses indicate that a limited number of genes are significantly affected in FRDA cells. Polyamides may increase transcription by altering the DNA conformation of genes harboring long GAA.TTC repeats or by chromatin opening.


Subject(s)
Friedreich Ataxia/genetics , Iron-Binding Proteins/genetics , Nylons/metabolism , Transcription, Genetic , Trinucleotide Repeats , Cell Line , Humans , Ligands , Molecular Structure , Nucleic Acid Conformation , Oligonucleotide Array Sequence Analysis , Frataxin
20.
Chem Biol ; 11(11): 1583-94, 2004 Nov.
Article in English | MEDLINE | ID: mdl-15556009

ABSTRACT

A small library of pyrrole-imidazole polyamide-DNA alkylator (chlorambucil) conjugates was screened for effects on morphology and growth characteristics of a human colon carcinoma cell line, and a compound was identified that causes cells to arrest in the G2/M stage of the cell cycle. Microarray analysis indicates that the histone H4c gene is significantly downregulated by this polyamide. RT-PCR and Western blotting experiments confirm this result, and siRNA to H4c mRNA yields the same cellular response. Strikingly, reduction of H4 protein by >50% does not lead to widespread changes in global gene expression. Sequence-specific alkylation within the coding region of the H4c gene in cell culture was confirmed by LM-PCR. The compound is active in a wide range of cancer cell lines, and treated cells do not form tumors in nude mice. The compound is also active in vivo, blocking tumor growth in mice, without obvious animal toxicity.


Subject(s)
Antineoplastic Agents, Alkylating/pharmacology , Chlorambucil/pharmacology , Gene Expression/drug effects , Nylons/pharmacology , Antineoplastic Agents, Alkylating/chemistry , Cell Line, Tumor , Cell Nucleus/chemistry , Cell Nucleus/drug effects , Cell Proliferation/drug effects , Chlorambucil/chemistry , Cross-Linking Reagents/pharmacology , DNA/metabolism , Drug Evaluation, Preclinical , Gene Expression Regulation , Gene Silencing , Gene Targeting , Histones/genetics , Humans , Nylons/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...