Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 784: 147224, 2021 Aug 25.
Article in English | MEDLINE | ID: mdl-33905931

ABSTRACT

This study assessed the real-world nitrogen oxide (NOx) emissions from 50 heavy-duty vehicles of different vocations and engine technologies using portable emissions measurement systems (PEMS). This is one of the most comprehensive in-use emissions studies conducted to date, which played a key role in the development of CARB's (California Air Recourses Board) updated EMission FACtor (EMFAC) model, especially for natural gas vehicles. In-use emissions testing was performed on school and transit buses, refuse haulers, goods movement vehicles, and delivery vehicles while were driven over their normal operating routes in the South Coast Air Basin. Engine technologies included diesel engines with and without selective catalytic reduction (SCR) systems, compressed natural gas (CNG) engines and liquified petroleum gas (LPG) engines, and SCR-equipped diesel hybrid electric vehicles. For most vehicles, the in-use NOx emissions were higher than the certification standards for the engine. Diesel vehicles generally showed higher brake-specific NOx emissions compared to the CNG vehicles. NOx emissions were strongly dependent on the SCR temperature, with SCR temperatures below 200 °C resulting in elevate brake-specific NOx. The 0.02 g/bhp-hr certified CNG vehicles showed the largest reductions in NOx emissions. The diesel hybrid electric vehicles showed important distance-specific NOx benefits compared to the conventional diesel vehicles, but higher emissions compared to the CNG and LPG vehicles. Overall, average NOx reductions were 75%, 94%, 65%, 79%, respectively, for the 0.2 CNG, 0.02 CNG, diesel hybrid electric, and LPG vehicles compared to diesel vehicles, due in part to some diesel vehicles with particularly high emissions, indicating that the widespread implementation of advanced technology and alternative fuel vehicles could provide important NOx reductions and a path for meeting air quality targets in California and elsewhere.

2.
Data Brief ; 18: 1520-1543, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29900329

ABSTRACT

Real-world vehicle and engine activity data were collected from 90 heavy-duty vehicles in California, United States, most of which have engine model year 2010 or newer and are equipped with selective catalytic reduction (SCR). The 90 vehicles represent 19 different groups defined by a combination of vocational use and geographic region. The data were collected using advanced data loggers that recorded vehicle speed, position (latitude and longitude), and more than 170 engine and aftertreatment parameters (including engine load and exhaust temperature) at the frequency of one Hz. This article presents plots of real-world exhaust temperature and engine load distributions for the 19 vehicle groups. In each plot, both frequency distribution and cumulative frequency distribution are shown. These distributions are generated using the aggregated data from all vehicle samples in each group.

3.
Sci Total Environ ; 635: 112-119, 2018 Sep 01.
Article in English | MEDLINE | ID: mdl-29660715

ABSTRACT

Hybrid engine technology is a potentially important strategy for reduction of tailpipe greenhouse gas (GHG) emissions and other pollutants that is now being implemented for off-road construction equipment. The goal of this study was to evaluate the emissions and fuel consumption impacts of electric-hybrid excavators using a Portable Emissions Measurement System (PEMS)-based methodology. In this study, three hybrid and four conventional excavators were studied for both real world activity patterns and tailpipe emissions. Activity data was obtained using engine control module (ECM) and global positioning system (GPS) logged data, coupled with interviews, historical records, and video. This activity data was used to develop a test cycle with seven modes representing different types of excavator work. Emissions data were collected over this test cycle using a PEMS. The results indicated the HB215 hybrid excavator provided a significant reduction in tailpipe carbon dioxide (CO2) emissions (from -13 to -26%), but increased diesel particulate matter (PM) (+26 to +27%) when compared to a similar model conventional excavator over the same duty cycle.


Subject(s)
Air Pollutants/analysis , Environmental Monitoring/methods , Motor Vehicles , Vehicle Emissions/analysis , Carbon Dioxide/analysis , Motor Vehicles/classification , Particulate Matter/analysis
4.
Sci Total Environ ; 634: 909-921, 2018 Sep 01.
Article in English | MEDLINE | ID: mdl-29660885

ABSTRACT

On-road heavy-duty diesel vehicles are a major contributor of oxides of nitrogen (NOx) emissions. In the US, many heavy-duty diesel vehicles employ selective catalytic reduction (SCR) technology to meet the 2010 emission standard for NOx. Typically, SCR needs to be at least 200°C before a significant level of NOx reduction is achieved. However, this SCR temperature requirement may not be met under some real-world operating conditions, such as during cold starts, long idling, or low speed/low engine load driving activities. The frequency of vehicle operation with low SCR temperature varies partly by the vehicle's vocational use. In this study, detailed vehicle and engine activity data were collected from 90 heavy-duty vehicles involved in a range of vocations, including line haul, drayage, construction, agricultural, food distribution, beverage distribution, refuse, public work, and utility repair. The data were used to create real-world SCR temperature and engine load profiles and identify the fraction of vehicle operating time that SCR may not be as effective for NOx control. It is found that the vehicles participated in this study operate with SCR temperature lower than 200°C for 11-70% of the time depending on their vocation type. This implies that real-world NOx control efficiency could deviate from the control efficiency observed during engine certification.

5.
MAbs ; 5(2): 208-18, 2013.
Article in English | MEDLINE | ID: mdl-23575268

ABSTRACT

The recognition that few human diseases are thoroughly addressed by mono-specific, monoclonal antibodies (mAbs) continues to drive the development of antibody therapeutics with additional specificities and enhanced activity. Historically, efforts to engineer additional antigen recognition into molecules have relied predominantly on the reformatting of immunoglobulin domains. In this report we describe a series of fully functional mAbs to which additional specificities have been imparted through the recombinant fusion of relatively short polypeptides sequences. The sequences are selected for binding to a particular target from combinatorial libraries that express linear, disulfide-constrained, or domain-based structures. The potential for fusion of peptides to the N- and C- termini of both the heavy and light chains affords the bivalent expression of up to four different peptides. The resulting molecules, called zybodies, can gain up to four additional specificities, while retaining the original functionality and specificity of the scaffold antibody. We explore the use of two clinically significant oncology antibodies, trastuzumab and cetuximab, as zybody scaffolds and demonstrate functional enhancements in each case. The affect of fusion position on both peptide and scaffold function is explored, and penta-specific zybodies are demonstrated to simultaneously engage five targets (ErbB2, EGFR, IGF-1R, Ang2 and integrin αvß3). Bispecific, trastuzumab-based zybodies targeting ErbB2 and Ang2 are shown to exhibit superior efficacy to trastuzumab in an angiogenesis-dependent xenograft tumor model. A cetuximab-based bispecific zybody that targeting EGFR and ErbB3 simultaneously disrupted multiple intracellular signaling pathways; inhibited tumor cell proliferation; and showed efficacy superior to that of cetuximab in a xenograft tumor model.


Subject(s)
Antibodies, Monoclonal/therapeutic use , Antibody Specificity , Neoplasms/therapy , Peptides/therapeutic use , Recombinant Fusion Proteins/therapeutic use , Amino Acid Sequence , Angiopoietin-2/chemistry , Angiopoietin-2/genetics , Angiopoietin-2/immunology , Animals , Antibodies, Bispecific/genetics , Antibodies, Bispecific/immunology , Antibodies, Bispecific/metabolism , Antibodies, Bispecific/therapeutic use , Antibodies, Monoclonal/genetics , Antibodies, Monoclonal/immunology , Antibodies, Monoclonal/metabolism , Antibodies, Monoclonal, Humanized/immunology , Antibodies, Monoclonal, Humanized/therapeutic use , Cell Proliferation/drug effects , Cetuximab , Female , Humans , Mice , Mice, Inbred NOD , Mice, SCID , Molecular Sequence Data , Neovascularization, Pathologic , Peptides/genetics , Peptides/immunology , Peptides/metabolism , Protein Engineering/methods , Receptor, ErbB-2/chemistry , Receptor, ErbB-2/genetics , Receptor, ErbB-2/immunology , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/immunology , Signal Transduction , Trastuzumab , Treatment Outcome , Xenograft Model Antitumor Assays
6.
Appl Microbiol Biotechnol ; 97(2): 621-32, 2013 Jan.
Article in English | MEDLINE | ID: mdl-22890777

ABSTRACT

Immunotoxins are rationally designed cancer targeting and killing agents. Disulfide stabilized antibody Fv portion-toxin conjugates (dsFv-toxin) are third generation immunotoxins containing only the antibody fragment variable portions and a toxin fused to the V(H) or V(L). Pseudomonas exotoxin fragment (PE-38) is a commonly used toxin in immunotoxin clinical trials. dsFv-toxin purification was previously published, but the recovery was not satisfactory. This report describes the development of a cGMP production process of the dsFv-toxin that incorporated a novel purification method. The method has been successfully applied to the clinical manufacturing of two dsFv-PE38 immunotoxins, MR1-1 targeting EGFRvIII and HA22 targeting CD22. The two subunits, V(L) and V(H) PE-38 were expressed separately in Escherichia coli using recombinant technology. Following cell lysis, inclusion bodies were isolated from the biomass harvested from fermentation in animal source component-free media. The dsFv-toxin was formed after denaturation and refolding, and subsequently purified to homogeneity through ammonium sulfate precipitation, hydrophobic interaction and ion-exchange chromatography steps. It was shown, in a direct comparison experiment using MR1-1 as model protein, that the recovery from the new purification method was improved three times over that from previously published method. The improved recovery was also demonstrated during the clinical production of two dsFv-PE38 immunotoxins-MR1-1 and HA22.


Subject(s)
Antibodies/chemistry , Antibodies/isolation & purification , Disulfides/chemistry , Escherichia coli/metabolism , Exotoxins/biosynthesis , Pseudomonas/chemistry , Cyclic GMP/metabolism , Escherichia coli/genetics , Exotoxins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...