Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 107(3): 1017-22, 2010 Jan 19.
Article in English | MEDLINE | ID: mdl-20018691

ABSTRACT

Archaeologists have proposed diverse hypotheses to explain the collapse of the southern Maya lowland cities between the 8th and 10th centuries A.D. Although it generally is believed that no single factor was responsible, a commonly accepted cause is environmental degradation as a product of large-scale deforestation. To date, the most compelling scientific evidence used to support this hypothesis comes from the archaeological site of Copan, Honduras, where the analysis of a sediment core suggested a dramatic increase in forest clearance in the Late Classic period (A.D. 600-900). By contrast, in the work presented here, the authors' analysis of a longer sediment core demonstrates that forest cover increased from A.D. 400 to A.D. 900, with arboreal pollen accounting for 59.8-71.0% of the pollen assemblage by approximately A.D. 780-980. The highest levels of deforestation are found about 900 B.C. when, at its peak, herb pollen made up 89.8% of the assemblage. A second, although less pronounced, period of elevated deforestation peaked at approximately A.D. 400 when herb pollen reached 65.3% of the assemblage. The first deforestation event likely coincided with the widespread adoption of agriculture, a pattern found elsewhere in Mesoamerica. The second period of forest clearance probably was associated with the incursion of Maya speakers into the Copan Valley and their subsequent construction of the earliest levels of the Copan Acropolis. These results refute the former hypothesis that the ancient Maya responded to their increasingly large urban population by exhausting, rather than conserving, natural resources.


Subject(s)
Civilization , Trees , Honduras
2.
J Hum Evol ; 47(1-2): 25-63, 2004.
Article in English | MEDLINE | ID: mdl-15288523

ABSTRACT

A database has been assembled with 278 age determinations for Madagascar. Materials 14C dated include pretreated sediments and plant macrofossils from cores and excavations throughout the island, and bones, teeth, or eggshells of most of the extinct megafaunal taxa, including the giant lemurs, hippopotami, and ratites. Additional measurements come from uranium-series dates on speleothems and thermoluminescence dating of pottery. Changes documented include late Pleistocene climatic events and, in the late Holocene, the apparently human-caused transformation of the environment. Multiple lines of evidence point to the earliest human presence at ca. 2300 14C yr BP (350 cal yr BC). A decline in megafauna, inferred from a drastic decrease in spores of the coprophilous fungus Sporormiella spp. in sediments at 1720+/-40 14C yr BP (230-410 cal yr AD), is followed by large increases in charcoal particles in sediment cores, beginning in the SW part of the island, and spreading to other coasts and the interior over the next millennium. The record of human occupation is initially sparse, but shows large human populations throughout the island by the beginning of the Second Millennium AD. Dating of the "subfossil" megafauna, including pygmy hippos, elephant birds, giant tortoises, and large lemurs, demonstrates that most if not all the extinct taxa were still present on the island when humans arrived. Many taxa overlapped chronologically with humans for a millennium or more. The extinct lemurs Hadropithecus stenognathus, Pachylemur insignis, Mesopropithecus pithecoides, and Daubentonia robusta, and the elephant birds Aepyornis spp. and Mullerornis spp., were still present near the end of the First Millennium AD. Palaeopropithecus ingens, Megaladapis edwardsi, and Archaeolemur sp. (cf. edwardsi) may have survived until the middle of the Second Millennium A.D. One specimen of Hippopotamus of unknown provenance dates to the period of European colonization.


Subject(s)
Biological Evolution , Food Chain , Fossils , Animals , Birds , Carbon Radioisotopes/analysis , Databases, Factual , Ecology , History, Ancient , Humans , Lemur , Madagascar , Mammals , Population Dynamics , Reptiles , Tooth
3.
Proc Natl Acad Sci U S A ; 100(19): 10800-5, 2003 Sep 16.
Article in English | MEDLINE | ID: mdl-12960385

ABSTRACT

Fossil spores of the dung fungus Sporormiella spp. in sediment cores from throughout Madagascar provide new information concerning megafaunal extinction and the introduction of livestock. Sporormiella percentages are very high in prehuman southwest Madagascar, but at the site with best stratigraphic resolution the spore declines sharply by approximately 1,720 yr B.P. (radiocarbon years ago). Within a few centuries there is a concomitant rise in microscopic charcoal that probably represents human transformation of the local environment. Reduced megaherbivore biomass in wooded savannas may have resulted in increased plant biomass and more severe fires. Some now-extinct taxa persisted locally for a millennium or more after the inferred megafaunal decline. Sites in closed humid forests of northwest Madagascar and a montane ericoid formation of the central highlands show only low to moderate Sporormiella percentages before humans. A subsequent rise in spore concentrations, thought to be evidence for livestock proliferation, occurs earliest at Amparihibe in the northwest at approximately 1,130 yr B.P.


Subject(s)
Ecology , Fungi , Fossils , Madagascar
SELECTION OF CITATIONS
SEARCH DETAIL
...