Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Cent Sci ; 10(3): 695-707, 2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38559296

ABSTRACT

We have discovered that hard, electrical conductors (e.g., metals or graphite) can be adhered to soft, aqueous materials (e.g., hydrogels, fruit, or animal tissue) without the use of an adhesive. The adhesion is induced by a low DC electric field. As an example, when 5 V DC is applied to graphite slabs spanning a tall cylindrical gel of acrylamide (AAm), a strong adhesion develops between the anode (+) and the gel in about 3 min. This adhesion endures after the field is removed, and we term it as hard-soft electroadhesion or EA[HS]. Depending on the material, adhesion occurs at the anode (+), cathode (-), or both electrodes. In many cases, EA[HS] can be reversed by reapplying the field with reversed polarity. Adhesion via EA[HS] to AAm gels follows the electrochemical series: e.g., it occurs with copper, lead, and tin but not nickel, iron, or zinc. We show that EA[HS] arises via electrochemical reactions that generate chemical bonds between the electrode and the polymers in the gel. EA[HS] can create new hybrid materials, thus enabling applications in robotics, energy storage, and biomedical implants. Interestingly, EA[HS] can even be achieved underwater, where typical adhesives cannot be used.

2.
ACS Appl Mater Interfaces ; 16(7): 9201-9209, 2024 Feb 21.
Article in English | MEDLINE | ID: mdl-38329464

ABSTRACT

Many applications of hydrogels rely on their ability to deliver encapsulated solutes, such as drugs; however, small hydrophilic solutes rapidly leak out of gels by diffusion. A need exists for a way to regulate solute release out of gels─to ensure zero release until a desired time (the OFF state) and thereafter for the release to be switched ON at a high rate. This should ideally be a repeatable switch; i.e., the gel should be cyclable repeatedly between the ON and OFF states. Such perfect, cyclical ON-OFF release of solutes from gels is demonstrated for the first time through a "smart skin" that is synthesized rapidly (in ∼10 min) around an entire gel. The thin (∼100 µm) and transparent polymer skin is endowed with redox-responsive properties through the use of urethane and acrylate monomers, one of which contains a thioether group. Initially, the skin is hydrophobic (water contact angle 102°), and it completely prevents hydrophilic solutes from leaking out of the gel. When contacted with oxidants such as hydrogen peroxide (H2O2), the thioethers are converted to sulfoxides, making the skin hydrophilic (water contact angle 42°) and thereby turning ON the release of solutes. Conversely, solute release can be turned OFF subsequently by adding a reducing agent such as vitamin C that reverts the sulfoxides to thioethers and thus returns the skin to its hydrophobic state. The release rate in the ON state can be tuned via the skin thickness as well as the oxidant concentration. The ability to regulate solute delivery from gels using smart skins is likely to prove significant in areas ranging from separations to agriculture and drug delivery.


Subject(s)
Hydrogels , Hydrogen Peroxide , Hydrogels/chemistry , Solutions , Water/chemistry , Sulfides , Sulfoxides
SELECTION OF CITATIONS
SEARCH DETAIL
...