Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 50
Filter
1.
Arq. bras. oftalmol ; 88(1): e2023, 2025. tab, graf
Article in English | LILACS-Express | LILACS | ID: biblio-1568845

ABSTRACT

ABSTRACT Purpose: To characterize the extracellular vesicle protein cargo in the aqueous humor and plasma of patients with ocular toxoplasmosis. Methods: Aqueous humor and plasma were collected from six patients with active ocular toxoplasmosis and six patients with cataract. Extracellular vesicles were isolated, and western blotting and mass spectrometry were performed for protein analysis. Results: All plasma samples from patients with ocular toxoplasmosis and cataract were positive for the tetraspanins CD63 and TSG101. However, the aqueous humor from patients with ocular toxoplasmosis was positive only for CD63. Sixty-seven new unreported proteins were identified in the aqueous humor and plasma of patients with the ocular toxoplasmosis and cataract. Of the 67 proteins, 10 and 7 were found only in the cataract and ocular toxoplasmosis groups, respectively. In general, these proteins were involved in immune system activation and retina homeostasis and were related to infections and retina-associated diseases. Conclusion: The distinct protein signatures between ocular toxoplasmosis and cataract may be helpful in the differential diagnosis of ocular toxoplasmosis. However, more studies are needed to better understand the role of these proteins in the pathogenesis of ocular toxoplasmosis.

2.
Cancers (Basel) ; 16(18)2024 Sep 22.
Article in English | MEDLINE | ID: mdl-39335202

ABSTRACT

BACKGROUND: Metastasis, occurring years after primary diagnosis, represents a poor prognosis in uveal melanoma (UM)-affected individuals. The nature of cells involved in this process is under debate. Circulating hybrid cells that have combined tumor and immune cell features found in blood were predictive of metastasis and may correspond to dual-nature cells (DNC) in the primary tumor. Herein, we sought to determine the presence of DNCs in primary UM tumors, the cell types involved in their genesis, and their ability to be formed in vitro. METHODS: UM lesions (n = 38) were immunolabeled with HMB45 in combination with immune-cell-specific antibodies. In parallel, we co-cultured UM cells and peripheral blood mononuclear cells (PBMCs) to analyze DNC formation. RESULTS: HMB45+/CD45+ DNCs were present in 90% (26/29) of the tumors, HMB45+/CD8+ DNCs were present in 93% (26/28), and HMB45+/CD68+ DNCs were present in 71% (17/24). DNCs formed with CD8+ and CD68+ cells were positively correlated to the infiltration of their respective immune cells. Notably, UM cells were prone to hybridize with PBMCs in vitro. CONCLUSIONS: This phenotypical characterization of DNCs in UM demonstrates that CD8+ T-cells and macrophages are capable of DNC formation, and they are important for better understanding metastatic dissemination, thus paving the path towards novel therapeutic avenues.

3.
JAMA Netw Open ; 7(9): e2431722, 2024 Sep 03.
Article in English | MEDLINE | ID: mdl-39235812

ABSTRACT

Importance: Metastatic breast cancer (MBC) poses a substantial clinical challenge despite advancements in diagnosis and treatment. While tissue biopsies offer a static snapshot of disease, liquid biopsy-through detection of circulating tumor DNA (ctDNA)-provides minimally invasive, real-time insight into tumor biology. Objective: To determine the association between ctDNA and survival outcomes in patients with MBC. Data Sources: An electronic search was performed in 5 databases (CINAHL, Cochrane Library, Embase, Medline, and Web of Science) and included all articles published from inception until October 23, 2023. Study Selection: To be included in the meta-analysis, studies had to (1) include women diagnosed with MBC; (2) report baseline plasma ctDNA data; and (3) report overall survival, progression-free survival, or disease-free survival with associated hazards ratios. Data Extraction and Synthesis: Titles and abstracts were screened independently by 2 authors. Data were pooled using a random-effects model. This study adhered to the Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) reporting guideline, and quality was assessed using the Newcastle-Ottawa Scale. Main Outcomes and Measures: The primary study outcome was the association between detection of specific genomic alterations in ctDNA with survival outcomes. Secondary objectives were associations of study methodology with survival. Results: Of 3162 articles reviewed, 37 met the inclusion criteria and reported data from 4264 female patients aged 20 to 94 years. Aggregated analysis revealed a significant association between ctDNA detection and worse survival (hazard ratio, 1.40; 95% CI, 1.22-1.58). Subgroup analysis identified significant associations of TP53 and ESR1 alterations with worse survival (hazard ratios, 1.58 [95% CI, 1.34-1.81] and 1.28 [95% CI, 0.96-1.60], respectively), while PIK3CA alterations were not associated with survival outcomes. Stratifying by detection method, ctDNA detection through next-generation sequencing and digital polymerase chain reaction was associated with worse survival (hazard ratios, 1.48 [95% CI, 1.22-1.74] and 1.28 [95% CI, 1.05-1.50], respectively). Conclusions and Relevance: In this systematic review and meta-analysis, detection of specific genomic alterations in ctDNA was associated with worse overall, progression-free, and disease-free survival, suggesting its potential as a prognostic biomarker in MBC. These results may help guide the design of future studies to determine the actionability of ctDNA findings.


Subject(s)
Breast Neoplasms , Circulating Tumor DNA , Humans , Circulating Tumor DNA/blood , Circulating Tumor DNA/genetics , Breast Neoplasms/blood , Breast Neoplasms/mortality , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Female , Neoplasm Metastasis , Biomarkers, Tumor/blood , Biomarkers, Tumor/genetics , Middle Aged
4.
Cell Death Dis ; 15(9): 668, 2024 Sep 12.
Article in English | MEDLINE | ID: mdl-39266560

ABSTRACT

Extracellular vesicles (EVs) have emerged as key players in intercellular communication, facilitating the transfer of crucial cargo between cells. Liquid biopsy, particularly through the isolation of EVs, has unveiled a rich source of potential biomarkers for health and disease, encompassing proteins and nucleic acids. A milestone in this exploration occurred a decade ago with the identification of extracellular vesicle-associated DNA (EV-DNA) in the bloodstream of a patient diagnosed with pancreatic cancer. Subsequent years have witnessed substantial advancements, deepening our insights into the molecular intricacies of EV-DNA emission, detection, and analysis. Understanding the complexities surrounding the release of EV-DNA and addressing the challenges inherent in EV-DNA research are pivotal steps toward enhancing liquid biopsy-based strategies. These strategies, crucial for the detection and monitoring of various pathological conditions, particularly cancer, rely on a comprehensive understanding of why and how EV-DNA is released. In our review, we aim to provide a thorough summary of a decade's worth of research on EV-DNA. We will delve into diverse mechanisms of EV-DNA emission, its potential as a biomarker, its functional capabilities, discordant findings in the field, and the hurdles hindering its clinical application. Looking ahead to the next decade, we envision that advancements in EV isolation and detection techniques, coupled with improved standardization and data sharing, will catalyze the development of novel strategies exploiting EV-DNA as both a source of biomarkers and therapeutic targets.


Subject(s)
DNA , Extracellular Vesicles , Humans , Extracellular Vesicles/metabolism , DNA/metabolism , DNA/blood , DNA/genetics , Biomarkers, Tumor/blood , Biomarkers, Tumor/metabolism , Biomarkers, Tumor/genetics , Liquid Biopsy/methods
5.
Arq Bras Oftalmol ; 88(1): e20230037, 2024.
Article in English | MEDLINE | ID: mdl-39109736

ABSTRACT

PURPOSE: To characterize the extracellular vesicle protein cargo in the aqueous humor and plasma of patients with ocular toxoplasmosis. METHODS: Aqueous humor and plasma were collected from six patients with active ocular toxoplasmosis and six patients with cataract. Extracellular vesicles were isolated, and western blotting and mass spectrometry were performed for protein analysis. RESULTS: All plasma samples from patients with ocular toxoplasmosis and cataract were positive for the tetraspanins CD63 and TSG101. However, the aqueous humor from patients with ocular toxoplasmosis was positive only for CD63. Sixty-seven new unreported proteins were identified in the aqueous humor and plasma of patients with the ocular toxoplasmosis and cataract. Of the 67 proteins, 10 and 7 were found only in the cataract and ocular toxoplasmosis groups, respectively. In general, these proteins were involved in immune system activation and retina homeostasis and were related to infections and retina-associated diseases. CONCLUSION: The distinct protein signatures between ocular toxoplasmosis and cataract may be helpful in the differential diagnosis of ocular toxoplasmosis. However, more studies are needed to better understand the role of these proteins in the pathogenesis of ocular toxoplasmosis.


Subject(s)
Aqueous Humor , Blotting, Western , Cataract , Extracellular Vesicles , Toxoplasmosis, Ocular , Humans , Aqueous Humor/metabolism , Aqueous Humor/chemistry , Aqueous Humor/parasitology , Extracellular Vesicles/metabolism , Male , Female , Cataract/metabolism , Middle Aged , Adult , Tetraspanin 30/analysis , Tetraspanin 30/metabolism , Mass Spectrometry , Aged , DNA-Binding Proteins , Transcription Factors , Endosomal Sorting Complexes Required for Transport
6.
Melanoma Res ; 34(4): 285-295, 2024 08 01.
Article in English | MEDLINE | ID: mdl-38847739

ABSTRACT

Uveal melanoma is the most common intraocular tumor in adults. Our group has previously developed a human uveal melanoma animal model; however, adverse effects caused by the immunosuppressive agent, cyclosporine A, prevented animals from surviving more than 12 weeks. In this study, we tested multiple cyclosporine A doses over an extended disease course up to 20 weeks, providing complete clinical imaging of intraocular tumors, histopathological analysis and liquid biopsy biomarker analysis. Twenty albino rabbits were divided into four groups with different daily cyclosporine A schedules (0-10 mg/kg) and inoculated with human uveal melanoma cell lines, 92.1 or MP41, into the suprachoroidal space. Rabbits were monitored with fundoscopy, ultrasound and optical coherence tomography. Intraocular tumors (macroscopic or microscopic) were detected in all study animals. Tumor size and growth were correlated to cyclosporine A dose, with tumors regressing when cyclosporine A was arrested. All tumors expressed HMB-45 and MelanA; however, tumor size, pigmentation and cell morphology differed in 92.1 vs. MP41 tumors. Finally, across all groups, circulating tumor DNA from plasma and aqueous humor was detected earlier than tumor detection by imaging and correlated to tumor growth. In conclusion, using three clinically relevant imaging modalities (fundoscopy, ultrasonography and optical coherence tomography) and liquid biopsy, we were successfully able to monitor tumor progression in our rabbit xenograft model of human uveal melanoma.


Subject(s)
Melanoma , Uveal Neoplasms , Animals , Uveal Neoplasms/pathology , Rabbits , Melanoma/pathology , Humans , Liquid Biopsy/methods , Disease Models, Animal , Xenograft Model Antitumor Assays , Cell Line, Tumor
7.
Cancer Cell Int ; 24(1): 180, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38783299

ABSTRACT

BACKGROUND: Although rare, uveal melanoma (UM) is a life-threatening malignancy. Understanding its biology is necessary to improve disease outcome. Three-dimensional (3D) in vitro culture methods have emerged as tools that incorporate physical and spatial cues that better mimic tumor biology and in turn deliver more predictive preclinical data. Herein, we comprehensively characterize UM cells under different 3D culture settings as a suitable model to study tumor cell behavior and therapeutic intervention. METHODS: Six UM cell lines were tested in two-dimensional (2D) and 3D-culture conditions. For 3D cultures, we used anchorage-dependent (AD) methods where cells were embedded or seeded on top of basement membrane extracts and anchorage-free (AF) methods where cells were seeded on agarose pre-coated plates, ultra-low attachment plates, and on hanging drops, with or without methylcellulose. Cultures were analyzed for multicellular tumor structures (MCTs) development by phase contrast and confocal imaging, and cell wellbeing was assessed based on viability, membrane integrity, vitality, apoptotic features, and DNA synthesis. Vascular endothelial growth factor (VEGF) production was evaluated under hypoxic conditions for cell function analysis. RESULTS: UM cells cultured following anchorage-free methods developed MCTs shaped as spheres. Regardless of their sizes and degree of compaction, these spheres displayed an outer ring of viable and proliferating cells, and a core with less proliferating and apoptotic cells. In contrast, UM cells maintained under anchorage-dependent conditions established several morphological adaptations. Some remained isolated and rounded, formed multi-size irregular aggregates, or adopted a 2D-like flat appearance. These cells invariably conserved their metabolic activity and conserved melanocytic markers (i.e., expression of Melan A/Mart-1 and HMB45). Notably, under hypoxia, cells maintained under 3D conditions secrete more VEGF compared to cells cultured under 2D conditions. CONCLUSIONS: Under an anchorage-free environment, UM cells form sphere-like MCTs that acquire attributes reminiscent of abnormal vascularized solid tumors. UM cells behavior in anchorage-dependent manner exposed diverse cells populations in response to cues from an enriched extracellular matrix proteins (ECM) environment, highlighting the plasticity of UM cells. This study provides a 3D cell culture platform that is more predictive of the biology of UM. The integration of such platforms to explore mechanisms of ECM-mediated tumor resistance, metastatic abilities, and to test novel therapeutics (i.e., anti-angiogenics and immunomodulators) would benefit UM care.

8.
J Extracell Vesicles ; 12(8): e12341, 2023 08.
Article in English | MEDLINE | ID: mdl-37563798

ABSTRACT

Lymph nodes (LNs) are frequently the first sites of metastasis. Currently, the only prognostic LN assessment is determining metastatic status. However, there is evidence suggesting that LN metastasis is facilitated by the formation of a pre-metastatic niche induced by tumour derived extracellular vehicles (EVs). Therefore, it is important to detect and modify the LN environmental changes. Earlier work has demonstrated that neutrophil extracellular traps (NETs) can sequester and promote distant metastasis. Here, we first confirmed that LN NETs are associated with reduced patient survival. Next, we demonstrated that NETs deposition precedes LN metastasis and NETs inhibition diminishes LN metastases in animal models. Furthermore, we discovered that EVs are essential to the formation of LN NETs. Finally, we showed that lymphatic endothelial cells secrete CXCL8/2 in response to EVs inducing NETs formation and the promotion of LN metastasis. Our findings reveal the role of EV-induced NETs in LN metastasis and provide potential immunotherapeutic vulnerabilities that may occur early in the metastatic cascade.


Subject(s)
Extracellular Traps , Extracellular Vesicles , Animals , Lymphatic Metastasis/pathology , Endothelial Cells , Lymph Nodes/pathology
9.
Cancer Med ; 12(15): 15777-15787, 2023 08.
Article in English | MEDLINE | ID: mdl-37526056

ABSTRACT

BACKGROUND: There is an alarming increase in human papillomavirus-associated head and neck cancer (HNC), reaching epidemic levels. While patient prognosis is generally good, off-target treatment effects are associated with decreased quality of life. Thus, non-invasive strategies to predict treatment response and risk of recurrence could help de-escalate treatment. In this study, we tested circulating tumor (ct)DNA in liquid biopsies (blood/saliva) of HPV-positive HNC patients to assess treatment response and disease progression. METHODS: A total of 235 blood and saliva samples were collected from 60 HPV-positive and 17 HPV-negative HNC patients (control group) before and/or after treatment. Samples were analyzed using ddPCR for HPV16/18/31/33/35/45 and correlated with imaging and pathological examination. RESULTS: HPV-ctDNA detection was significantly higher prior to treatment (91%) than after treatment (8.0%) (χ2 p < 0.00001), with high concordance between saliva and blood (93%). In matched samples, all patients positive for ctDNA before treatment showed significant reductions in ctDNA levels post treatment (p < 0.0001). All but one patient with persistent ctDNA after treatment showed residual tumor and subsequent recurrence. Finally, fragmentomic analysis revealed shifts in cell-free DNA fragment size after treatment, suggesting a complementary biomarker for treatment response. CONCLUSIONS: Blood and saliva were found to be good sources of HPV-ctDNA. The presence of ctDNA strongly correlated with treatment response, demonstrating clinical utility as a non-invasive biomarker to monitor tumor progression in HPV-positive HNC. Liquid biopsy based ctDNA testing could be an effective approach to predict recurrence and stratify patients for de-escalation of treatment, thereby improving quality of life.


Subject(s)
Circulating Tumor DNA , Head and Neck Neoplasms , Papillomavirus Infections , Humans , Human Papillomavirus Viruses , Papillomavirus Infections/complications , Papillomavirus Infections/diagnosis , Human papillomavirus 16/genetics , Neoplasm, Residual , Saliva , Quality of Life , Human papillomavirus 18/genetics , Head and Neck Neoplasms/therapy , Head and Neck Neoplasms/complications , Circulating Tumor DNA/genetics , Biomarkers, Tumor/genetics , Neoplasm Recurrence, Local
10.
FASEB J ; 37(2): e22732, 2023 02.
Article in English | MEDLINE | ID: mdl-36694994

ABSTRACT

E-cigarettes currently divide public opinion, with some considering them a useful tool for smoking cessation and while others are concerned with potentially adverse health consequences. However, it may take decades to fully understand the effects of e-cigarette use in humans given their relative newness on the market. This highlights the need for comprehensive preclinical studies investigating the effects of e-cigarette exposure on health outcomes. Here, we investigated the impact of chronic, low-level JUUL aerosol exposure on multiple lung outcomes. JUUL is a brand of e-cigarettes popular with youth and young adults. To replicate human exposures, 8- to 12-week-old male and female C57BL/6J mice were exposed to commercially available JUUL products (containing 59 mg/ml nicotine). Mice were exposed to room air, PG/VG, or JUUL daily for 4 weeks. After the exposure period, inflammatory markers were assessed via qRT-PCR, multiplex cytokine assays, and differential cell count. Proteomic and transcriptomic analyses were also performed on samples isolated from the lavage of the lungs; this included unbiased analysis of proteins contained within extracellular vesicles (EVs). Mice exposed to JUUL aerosols for 4 weeks had significantly increased neutrophil and lymphocyte populations in the BAL and some changes in cytokine mRNA expression. However, BAL cytokines did not change. Proteomic and transcriptomic analysis revealed significant changes in numerous biological pathways including neutrophil degranulation, PPAR signaling, and xenobiotic metabolism. Thus, e-cigarettes are not inert and can cause significant cellular and molecular changes in the lungs.


Subject(s)
Electronic Nicotine Delivery Systems , Young Adult , Adolescent , Male , Humans , Female , Animals , Mice , Transcriptome , Proteomics , Mice, Inbred C57BL , Aerosols/analysis , Lung
11.
J Extracell Vesicles ; 11(10): e12270, 2022 10.
Article in English | MEDLINE | ID: mdl-36271888

ABSTRACT

Extracellular vesicles (EVs) play a key role in cellular communication both in physiological conditions and in pathologies such as cancer. Emerging evidence has shown that EVs are active carriers of molecular cargo (e.g. protein and nucleic acids) and a powerful source of biomarkers and targets. While recent studies on EV-associated DNA (EV-DNA) in human biofluids have generated a large amount of data, there is currently no database that catalogues information on EV-DNA. To fill this gap, we have manually curated a database of EV-DNA data derived from human biofluids (liquid biopsy) and in-vitro studies, called the Extracellular Vesicle-Associated DNA Database (EV-ADD). This database contains validated experimental details and data extracted from peer-reviewed published literature. It can be easily queried to search for EV isolation methods and characterization, EV-DNA isolation techniques, quality validation, DNA fragment size, volume of starting material, gene names and disease context. Currently, our database contains samples representing 23 diseases, with 13 different types of EV isolation techniques applied on eight different human biofluids (e.g. blood, saliva). In addition, EV-ADD encompasses EV-DNA data both representing the whole genome and specifically including oncogenes, such as KRAS, EGFR, BRAF, MYC, and mitochondrial DNA (mtDNA). An EV-ADD data metric system was also integrated to assign a compliancy score to the MISEV guidelines based on experimental parameters reported in each study. While currently available databases document the presence of proteins, lipids, RNA and metabolites in EVs (e.g. Vesiclepedia, ExoCarta, ExoBCD, EVpedia, and EV-TRACK), to the best of our knowledge, EV-ADD is the first of its kind to compile all available EV-DNA datasets derived from human biofluid samples. We believe that this database provides an important reference resource on EV-DNA-based liquid biopsy research, serving as a learning tool and to showcase the latest developments in the EV-DNA field. EV-ADD will be updated yearly as newly published EV-DNA data becomes available and it is freely available at www.evdnadatabase.com.


Subject(s)
Extracellular Vesicles , Nucleic Acids , Humans , Databases, Nucleic Acid , Proto-Oncogene Proteins B-raf/metabolism , Proto-Oncogene Proteins p21(ras)/metabolism , Liquid Biopsy/methods , Extracellular Vesicles/metabolism , Nucleic Acids/metabolism , Proteins/metabolism , RNA/metabolism , ErbB Receptors/genetics , Biomarkers/metabolism , Lipids , DNA, Mitochondrial/metabolism
13.
Exp Eye Res ; 217: 108978, 2022 04.
Article in English | MEDLINE | ID: mdl-35134392

ABSTRACT

Age-related macular degeneration (AMD) is a major cause of blindness in elderly. It is characterized by the loss of central vision due to damaged retinal pigment epithelial (RPE) cells and photoreceptors. Blue Light (BL) exposure was proposed as a risk factor for AMD progression. We undertook this study to determine the effects of BL on the behaviour of RPE cells and their potential mitigation by BL-filtering intraocular lenses (IOL). Human RPE cells were exposed or not to BL, with the absence or presence of either a clear ultraviolet (UV)-filtering IOL (CIOL), or a yellow UV- and BL-filtering IOL (YIOL). Cells were analyzed for their oxidative stress by measuring the levels of reactive oxygen species (ROS), and their viability. BL exposure significantly increased the levels of both total cellular and mitochondrial ROS. While this increase was not affected by placing the CIOL in the BL beam, YIOL decreased the levels of both ROS reservoirs. Increased ROS production was accompanied by increased cell death which was similarly decreased when cells were protected with the YIOL. Pre-treatment of cells with N-acetylcycteine (NAC) abolished the increased cell death, suggesting that the effects of BL on cell viability were mainly due to increased levels of ROS. BL is deleterious to RPE cells due to increased oxidative stress and cell death. These effects were mitigated by filtering these radiations. The use of BL-filtering devices may represent a strategy to reduce these effects on RPE cells and delay the onset of AMD.


Subject(s)
Macular Degeneration , Retinal Pigment Epithelium , Aged , Epithelial Cells/metabolism , Humans , Light , Macular Degeneration/metabolism , Macular Degeneration/prevention & control , Oxidative Stress , Reactive Oxygen Species/metabolism , Retinal Pigment Epithelium/metabolism , Retinal Pigments/metabolism
14.
Cancer Cell Int ; 21(1): 607, 2021 Nov 17.
Article in English | MEDLINE | ID: mdl-34789240

ABSTRACT

BACKGROUND: Uveal melanoma (UM), the most prevalent intraocular tumor in adults, is a highly metastatic and drug resistant lesion. Recent studies have demonstrated cytotoxic and anti-metastatic effects of the antiprogestin and antiglucocorticoid mifepristone (MF) in vitro and in clinical trials involving meningioma, colon, breast, and ovarian cancers. Drug repurposing is a cost-effective approach to bring approved drugs with good safety profiles to the clinic. This current study assessed the cytotoxic effects of MF in human UM cell lines of different genetic backgrounds. METHODS: The effects of incremental concentrations of MF (0, 5, 10, 20, or 40 µM) on a panel of human UM primary (MEL270, 92.1, MP41, and MP46) and metastatic (OMM2.5) cells were evaluated. Cells were incubated with MF for up to 72 h before subsequent assays were conducted. Cellular functionality and viability were assessed by Cell Counting Kit-8, trypan blue exclusion assay, and quantitative label-free IncuCyte live-cell analysis. Cell death was analyzed by binding of Annexin V-FITC and/or PI, caspase-3/7 activity, and DNA fragmentation. Additionally, the release of cell-free DNA was assessed by droplet digital PCR, while the expression of progesterone and glucocorticoid receptors was determined by quantitative real-time reverse transcriptase PCR. RESULTS: MF treatment reduced cellular proliferation and viability of all UM cell lines studied in a concentration-dependent manner. A reduction in cell growth was observed at lower concentrations of MF, with evidence of cell death at higher concentrations. A significant increase in Annexin V-FITC and PI double positive cells, caspase-3/7 activity, DNA fragmentation, and cell-free DNA release suggests potent cytotoxicity of MF. None of the tested human UM cells expressed the classical progesterone receptor in the absence or presence of MF treatment, suggesting a mechanism independent of the modulation of the cognate nuclear progesterone receptor. In turn, all cells expressed non-classical progesterone receptors and the glucocorticoid receptor. CONCLUSION: This study demonstrates that MF impedes the proliferation of UM cells in a concentration-dependent manner. We report that MF treatment at lower concentrations results in cell growth arrest, while increasing the concentration leads to lethality. MF, which has a good safety profile, could be a reliable adjuvant of a repurposing therapy against UM.

15.
Micromachines (Basel) ; 12(9)2021 Sep 14.
Article in English | MEDLINE | ID: mdl-34577745

ABSTRACT

The shape and dimensions of a micromixer are key elements in the mixing process. Accurately quantifying the mixing efficiency enables the evaluation of the performance of a micromixer and the selection of the most suitable one for specific applications. In this paper, two methods are investigated to evaluate the mixing efficiency: a numerical model and an experimental model with a software image processing technique. Using two methods to calculate the mixing efficiency, in addition to corroborating the results and increasing their reliability, creates various possible approaches that can be selected depending on the circumstances, resources, amount of data to be processed and processing time. Image processing is an easy-to-implement tool, is applicable to different programming languages, is flexible, and provides a quick response that allows the calculation of the mixing efficiency using a process of filtering of images and quantifying the intensity of the color, which is associated with the percentage of mixing. The results showed high similarity between the two methods, with a difference ranging between 0 and 6% in all the evaluated points.

16.
Langmuir ; 37(28): 8544-8556, 2021 07 20.
Article in English | MEDLINE | ID: mdl-34232664

ABSTRACT

Liposomes encapsulate different substances ranging from drugs to genes. Control over the average size and size distribution of these nanoparticles is vital for biomedical applications since these characteristics determine to a high degree where liposomes will accumulate in the human body. Micromixers enable the continuous flow synthesis of liposomes, improving size control and reproducibility. Recently, Dean flow dynamics-based micromixers, such as the periodic disturbance mixer (PDM), have been shown to produce controlled-size liposomes in a scalable and reproducible way. However, contrary to micromixers based on molecular diffusion or chaotic advection, their production factors and their influence over liposome properties have not yet been addressed thoroughly. In this work, we present a comprehensive parametric study of the effects of flow conditions and molecular changing factors such as concentration, lipid type, and temperature on the physicochemical characteristics of liposomes. Numerical models and confocal images are used to quantitatively and qualitatively evaluate mixing performance under different liposome production conditions and their relationship with vesicle properties. The total flow rate (TFR) and, to a lesser extent, the flow rate ratio (FRR) control the liposome size and size distribution. Effects on liposome size are also observed by changing the molecular factors. Moreover, the liposome ζ potential is independent of the factors studied here. The micromixer presented in this work enables the production of liposomes as small as 24 nm, with monodispersed to low or close to low polydispersed liposome populations as well as a production rate as high as 41 mg/h.


Subject(s)
Liposomes , Nanoparticles , Humans , Lipids , Particle Size , Reproducibility of Results
17.
J Exp Clin Cancer Res ; 40(1): 196, 2021 Jun 16.
Article in English | MEDLINE | ID: mdl-34134723

ABSTRACT

BACKGROUND: Uveal melanoma (UM) is the most common intraocular tumor in adults. Despite good primary tumor control, up to 50% of patients develop metastasis, which is lethal. UM often presents asymptomatically and is usually diagnosed by clinical examination and imaging, making it one of the few cancer types diagnosed without a biopsy. Hence, alternative diagnostic tools are needed. Circulating tumor DNA (ctDNA) has shown potential as a liquid biopsy target for cancer screening and monitoring. The aim of this study was to evaluate the feasibility and clinical utility of ctDNA detection in UM using specific UM gene mutations. METHODS: We used the highly sensitive digital droplet PCR (ddPCR) assay to quantify UM driver mutations (GNAQ, GNA11, PLCß4 and CYSTLR2) in cell-free DNA (cfDNA). cfDNA was analyzed in six well established human UM cell lines with known mutational status. cfDNA was analyzed in the blood and aqueous humor of an UM rabbit model and in the blood of patients. Rabbits were inoculated with human UM cells into the suprachoroidal space, and mutated ctDNA was quantified from longitudinal peripheral blood and aqueous humor draws. Blood clinical specimens were obtained from primary UM patients (n = 14), patients presenting with choroidal nevi (n = 16) and healthy individuals (n = 15). RESULTS: The in vitro model validated the specificity and accuracy of ddPCR to detect mutated cfDNA from UM cell supernatant. In the rabbit model, plasma and aqueous humor levels of ctDNA correlated with tumor growth. Notably, the detection of ctDNA preceded clinical detection of the intraocular tumor. In human specimens, while we did not detect any trace of ctDNA in healthy controls, we detected ctDNA in all UM patients. We observed that UM patients had significantly higher levels of ctDNA than patients with nevi, with a strong correlation between ctDNA levels and malignancy. Noteworthy, in patients with nevi, the levels of ctDNA highly correlated with the presence of clinical risk factors. CONCLUSIONS: We report, for the first time, compelling evidence from in vitro assays, and in vivo animal model and clinical specimens for the potential of mutated ctDNA as a biomarker of UM progression. These findings pave the way towards the implementation of a liquid biopsy to detect and monitor UM tumors.


Subject(s)
Biomarkers, Tumor/metabolism , Circulating Tumor DNA/blood , Liquid Biopsy/methods , Melanoma/diagnosis , Melanoma/genetics , Uveal Neoplasms/diagnosis , Uveal Neoplasms/genetics , Animals , Female , Humans , Mutation , Rabbits
18.
Ocul Oncol Pathol ; 7(1): 1-16, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33796511

ABSTRACT

In the era of precision oncology, major strides are being made to use individual tumor information for clinical decision-making. Differing from traditional biopsy methods, the emerging practice of liquid biopsy provides a minimally invasive way of obtaining tumor cells and derived molecules. Liquid biopsy provides a means to detect and monitor disease progression, recurrence, and treatment response in a noninvasive way, and to potentially complement classical biopsy. Uveal melanoma (UM) is a unique malignancy, with diagnosis heavily reliant on imaging, few repeat biopsies, and a high rate of metastasis, which occurs hematogenously and often many years after diagnosis. In this disease setting, a noninvasive biomarker to detect, monitor, and study the disease in real time could lead to better disease understanding and patient care. While advances have been made in the detection of tumor-disseminated components, sensitivity and specificity remain important challenges. Ambiguity remains in how to interpret current findings and in how liquid biopsy can have a place in clinical practice. Related publications in UM are few compared to other cancers, but with further studies we may be able to uncover more about the biology of disseminated molecules and the mechanisms involved in the progression to metastasis.

19.
Colloids Surf B Biointerfaces ; 198: 111447, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33223347

ABSTRACT

Liposomes are versatile particles used in the biomedical field as drug delivery systems (DDS). Liposome production using micromixers have shown to yield nanoparticles for DDS in a single step with a controllable size by changing flow conditions. Nonetheless, other factors such as the organic solvent, play a crucial role in the liposome formation process. Furthermore, drug solubility and toxicity are pivotal when deciding which organic solvent to choose. In this work, liposomes were produced in a periodic disturbance mixer (PDM). We investigated three conventional organic solvents: ethanol, methanol, and isopropanol as well as Transcutol®. We assessed the organic solvent influence on liposome characteristics (size, size distribution and zeta potential). Among the four organic solvents, Transcutol® yielded the smallest liposomes, which ranged from 80 nm to 160 nm. Moreover, a more in-depth investigation showed that Transcutol® produced smaller or similar-sized particles under different temperature and lipid concentration conditions, compared with ethanol. Furthermore, we proved that particles zeta potential was not influenced by the organic solvent, production temperature, or lipid concentration. This work results show that Transcutol® could replace the conventional alcohol-based solvents and can potentially avoid filtration steps due to its low toxicity. Therefore, the present approach is appealing for DDS development.


Subject(s)
Ethylene Glycols , Liposomes , Particle Size , Solubility , Solvents
20.
Semin Cancer Biol ; 71: 65-85, 2021 06.
Article in English | MEDLINE | ID: mdl-32450140

ABSTRACT

Uveal melanoma (UM) is a type of intraocular tumor with a propensity to disseminate to the liver. Despite the identification of the early driver mutations during the development of the pathology, the process of UM metastasis is still not fully comprehended. A better understanding of the genetic, molecular, and environmental factors participating to its spread and metastatic outgrowth could provide additional approaches for UM treatment. In this review, we will discuss the advances made towards the understanding of the pathogenesis of metastatic UM, summarize the current and prospective treatments, and introduce some of the ongoing research in this field.


Subject(s)
Liver Neoplasms/secondary , Melanoma/pathology , Uveal Neoplasms/pathology , Animals , Humans , Risk Factors
SELECTION OF CITATIONS
SEARCH DETAIL