Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
J Med Chem ; 67(6): 4936-4949, 2024 Mar 28.
Article in English | MEDLINE | ID: mdl-38477582

ABSTRACT

The H1047R mutation of PIK3CA is highly prevalent in breast cancers and other solid tumors. Selectively targeting PI3KαH1047R over PI3KαWT is crucial due to the role that PI3KαWT plays in normal cellular processes, including glucose homeostasis. Currently, only one PI3KαH1047R-selective inhibitor has progressed into clinical trials, while three pan mutant (H1047R, H1047L, H1047Y, E542K, and E545K) selective PI3Kα inhibitors have also reached the clinical stage. Herein, we report the design and discovery of a series of pyridopyrimidinones that inhibit PI3KαH1047R with high selectivity over PI3KαWT, resulting in the discovery of compound 17. When dosed in the HCC1954 tumor model in mice, 17 provided tumor regressions and a clear pharmacodynamic response. X-ray cocrystal structures from several PI3Kα inhibitors were obtained, revealing three distinct binding modes within PI3KαH1047R including a previously reported cryptic pocket in the C-terminus of the kinase domain wherein we observe a ligand-induced interaction with Arg1047.


Subject(s)
Antineoplastic Agents , Neoplasms , Mice , Animals , Antineoplastic Agents/chemistry , Phosphoinositide-3 Kinase Inhibitors/pharmacology , Phosphoinositide-3 Kinase Inhibitors/therapeutic use , Neoplasms/drug therapy , Mutation , Class I Phosphatidylinositol 3-Kinases/therapeutic use
2.
J Med Chem ; 65(14): 9678-9690, 2022 07 28.
Article in English | MEDLINE | ID: mdl-35833726

ABSTRACT

SOS1 is one of the major guanine nucleotide exchange factors that regulates the ability of KRAS to cycle through its "on" and "off" states. Disrupting the SOS1:KRASG12C protein-protein interaction (PPI) can increase the proportion of GDP-loaded KRASG12C, providing a strong mechanistic rationale for combining inhibitors of the SOS1:KRAS complex with inhibitors like MRTX849 that target GDP-loaded KRASG12C. In this report, we detail the design and discovery of MRTX0902─a potent, selective, brain-penetrant, and orally bioavailable SOS1 binder that disrupts the SOS1:KRASG12C PPI. Oral administration of MRTX0902 in combination with MRTX849 results in a significant increase in antitumor activity relative to that of either single agent, including tumor regressions in a subset of animals in the MIA PaCa-2 tumor mouse xenograft model.


Subject(s)
Brain , Proto-Oncogene Proteins p21(ras) , Acetonitriles , Animals , Cell Line, Tumor , Humans , Mice , Mutation , Piperazines , Proto-Oncogene Proteins p21(ras)/genetics , Pyrimidines , SOS1 Protein/metabolism
3.
Clin Cancer Res ; 28(15): 3318-3328, 2022 08 02.
Article in English | MEDLINE | ID: mdl-35404402

ABSTRACT

PURPOSE: Patients with KRAS-mutant non-small cell lung cancer (NSCLC) with brain metastases (BM) have a poor prognosis. Adagrasib (MRTX849), a potent oral small-molecule KRASG12C inhibitor, irreversibly and selectively binds KRASG12C, locking it in its inactive state. Adagrasib has been optimized for favorable pharmacokinetic properties, including long half-life (∼24 hours), extensive tissue distribution, dose-dependent pharmacokinetics, and central nervous system penetration; however, BM-specific antitumor activity of KRASG12C inhibitors remains to be fully characterized. EXPERIMENTAL DESIGN: A retrospective database query identified patients with KRAS-mutant NSCLC to understand their propensity to develop BM. Preclinical studies assessed physiochemical and pharmacokinetic properties of adagrasib. Mice bearing intracranial KRASG12C-mutant NSCLC xenografts (LU99-Luc/H23-Luc/LU65-Luc) were treated with clinically relevant adagrasib doses, and levels of adagrasib in plasma, cerebrospinal fluid (CSF), and brain were determined along with antitumor activity. Preliminary clinical data were collected from 2 patients with NSCLC with untreated BM who had received adagrasib 600 mg twice daily in the phase Ib cohort of the KRYSTAL-1 trial; CSF was collected, adagrasib concentrations measured, and antitumor activity in BM evaluated. RESULTS: Patients with KRAS-mutant NSCLC demonstrated high propensity to develop BM (≥40%). Adagrasib penetrated into CSF and demonstrated tumor regression and extended survival in multiple preclinical BM models. In 2 patients with NSCLC and untreated BM, CSF concentrations of adagrasib measured above the target cellular IC50. Both patients demonstrated corresponding BM regression, supporting potential clinical activity of adagrasib in the brain. CONCLUSIONS: These data support further development of adagrasib in patients with KRASG12C-mutant NSCLC with untreated BM. See related commentary by Kommalapati and Mansfield, p. 3179.


Subject(s)
Brain Neoplasms , Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Acetonitriles , Animals , Brain Neoplasms/drug therapy , Brain Neoplasms/genetics , Brain Neoplasms/mortality , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/pathology , Humans , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Mice , Piperazines , Proto-Oncogene Proteins p21(ras)/genetics , Pyrimidines , Retrospective Studies
4.
J Med Chem ; 65(3): 1749-1766, 2022 02 10.
Article in English | MEDLINE | ID: mdl-35041419

ABSTRACT

The PRMT5•MTA complex has recently emerged as a new synthetically lethal drug target for the treatment of MTAP-deleted cancers. Here, we report the discovery of development candidate MRTX1719. MRTX1719 is a potent and selective binder to the PRMT5•MTA complex and selectively inhibits PRMT5 activity in MTAP-deleted cells compared to MTAP-wild-type cells. Daily oral administration of MRTX1719 to tumor xenograft-bearing mice demonstrated dose-dependent inhibition of PRMT5-dependent symmetric dimethylarginine protein modification in MTAP-deleted tumors that correlated with antitumor activity. A 4-(aminomethyl)phthalazin-1(2H)-one hit was identified through a fragment-based screen, followed by X-ray crystallography, to confirm binding to the PRMT5•MTA complex. Fragment growth supported by structural insights from X-ray crystallography coupled with optimization of pharmacokinetic properties aided the discovery of development candidate MRTX1719.


Subject(s)
Antineoplastic Agents/therapeutic use , Neoplasms/drug therapy , Phthalazines/therapeutic use , Protein-Arginine N-Methyltransferases/antagonists & inhibitors , Animals , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/metabolism , Cell Line, Tumor , Deoxyadenosines/metabolism , Female , Gene Deletion , Humans , Mice, Nude , Phthalazines/chemical synthesis , Phthalazines/metabolism , Protein Binding , Protein-Arginine N-Methyltransferases/metabolism , Purine-Nucleoside Phosphorylase/deficiency , Purine-Nucleoside Phosphorylase/genetics , Thionucleosides/metabolism , Xenograft Model Antitumor Assays
5.
J Med Chem ; 63(13): 6679-6693, 2020 07 09.
Article in English | MEDLINE | ID: mdl-32250617

ABSTRACT

Capping off an era marred by drug development failures and punctuated by waning interest and presumed intractability toward direct targeting of KRAS, new technologies and strategies are aiding in the target's resurgence. As previously reported, the tetrahydropyridopyrimidines were identified as irreversible covalent inhibitors of KRASG12C that bind in the switch-II pocket of KRAS and make a covalent bond to cysteine 12. Using structure-based drug design in conjunction with a focused in vitro absorption, distribution, metabolism and excretion screening approach, analogues were synthesized to increase the potency and reduce metabolic liabilities of this series. The discovery of the clinical development candidate MRTX849 as a potent, selective covalent inhibitor of KRASG12C is described.


Subject(s)
Antineoplastic Agents/pharmacology , Enzyme Inhibitors/pharmacology , Proto-Oncogene Proteins p21(ras)/antagonists & inhibitors , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacokinetics , Cell Line, Tumor , Drug Design , Drug Screening Assays, Antitumor , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacokinetics , Humans , Mice , Models, Molecular , Mutation , Proto-Oncogene Proteins p21(ras)/chemistry , Proto-Oncogene Proteins p21(ras)/genetics , Xenograft Model Antitumor Assays
6.
J Org Chem ; 83(12): 6334-6353, 2018 06 15.
Article in English | MEDLINE | ID: mdl-29790748

ABSTRACT

Alkylation of 4-methoxy-1 H-pyrazolo[3,4- d]pyrimidine (1b) with iodomethane in THF using NaHMDS as base selectively provided N2-methyl product 4-methoxy-2-methyl-2 H-pyrazolo[3,4- d]pyrimidine (3b) in an 8/1 ratio over N1-methyl product (2b). Interestingly, conducting the reaction in DMSO reversed selectivity to provide a 4/1 ratio of N1/N2 methylated products. Crystal structures of product 3b with N1 and N7 coordinated to sodium indicated a potential role for the latter reinforcing the N2-selectivity. Limits of selectivity were tested with 26 heterocycles which revealed that N7 was a controlling element directing alkylations to favor N2 for pyrazolo- and N3 for imidazo- and triazolo-fused ring heterocycles when conducted in THF. Use of 1H-detected pulsed field gradient-stimulated echo (PFG-STE) NMR defined the molecular weights of ionic reactive complexes. This data and DFT charge distribution calculations suggest close ion pairs (CIPs) or tight ion pairs (TIPs) control alkylation selectivity in THF and solvent-separated ion pairs (SIPs) are the reactive species in DMSO.

7.
Chemistry ; 22(50): 17983-17986, 2016 Dec 12.
Article in English | MEDLINE | ID: mdl-27758012

ABSTRACT

Salvinorin A (1) is natural hallucinogen that binds the human κ-opioid receptor. A total synthesis has been developed that parlays the stereochemistry of l-(+)-tartaric acid into that of (-)-1 via an unprecedented allylic dithiane intramolecular Diels-Alder reaction to obtain the trans-decalin scaffold. Tsuji allylation set the C9 quaternary center and a late-stage stereoselective chiral ligand-assisted addition of a 3-titanium furan upon a C12 aldehyde/C17 methyl ester established the furanyl lactone moiety. The tartrate diol was finally converted into the C1,C2 keto-acetate.


Subject(s)
Diterpenes, Clerodane/chemical synthesis , Furans/chemistry , Naphthalenes/chemical synthesis , Quinolizines/chemistry , Sulfur Compounds/chemistry , Titanium/chemistry , Cycloaddition Reaction , Diterpenes, Clerodane/chemistry , Humans , Ligands , Naphthalenes/chemistry , Stereoisomerism
8.
Angew Chem Int Ed Engl ; 53(37): 9851-5, 2014 Sep 08.
Article in English | MEDLINE | ID: mdl-25088979

ABSTRACT

A simple method to convert readily available carboxylic acids into sulfinate salts by employing an interrupted Barton decarboxylation reaction is reported. A medicinally oriented panel of ten new sulfinate reagents was created using this method, including a key trifluoromethylcyclopropanation reagent, TFCS-Na. The reactivity of six of these salts towards C-H functionalization was field-tested using several different classes of heterocycles.


Subject(s)
Sulfinic Acids/chemistry , Sulfinic Acids/chemical synthesis , Acids, Heterocyclic , Catalysis , Models, Molecular , Molecular Structure
9.
J Am Chem Soc ; 136(13): 4853-6, 2014 Apr 02.
Article in English | MEDLINE | ID: mdl-24611732

ABSTRACT

A practical C-H functionalization method for the methylation of heteroarenes is presented. Inspiration from Nature's methylating agent, S-adenosylmethionine (SAM), allowed for the design and development of zinc bis(phenylsulfonylmethanesulfinate), or PSMS. The action of PSMS on a heteroarene generates a (phenylsulfonyl)methylated intermediate that can be easily separated from unreacted starting material. This intermediate can then be desulfonylated to the methylated product or elaborated to a deuteriomethylated product, and can divergently access medicinally important motifs. This mild, operationally simple protocol that can be conducted in open air at room temperature is compatible with sensitive functional groups for the late-stage functionalization of pharmacologically relevant substrates.


Subject(s)
Hydrocarbons, Aromatic/chemistry , Organometallic Compounds/chemistry , S-Adenosylmethionine/chemistry , Sulfinic Acids/chemistry , Zinc/chemistry , Methylation , S-Adenosylmethionine/metabolism , Transferases/metabolism
10.
J Med Chem ; 57(4): 1616-20, 2014 Feb 27.
Article in English | MEDLINE | ID: mdl-24472070

ABSTRACT

The bioavailability of aromatic azaheterocyclic drugs can be affected by the activity of aldehyde oxidase (AO). Susceptibility to AO metabolism is difficult to predict computationally and can be complicated in vivo by differences between species. Here we report the use of bis(((difluoromethyl)sulfinyl)oxy)zinc (DFMS) as a source of CF2H radical for a rapid and inexpensive chemical "litmus test" for the early identification of heteroaromatic drug candidates that have a high probability of metabolism by AO.


Subject(s)
Aldehyde Oxidase/metabolism , Hydrocarbons/metabolism
12.
J Am Chem Soc ; 134(3): 1474-7, 2012 Jan 25.
Article in English | MEDLINE | ID: mdl-22236456

ABSTRACT

The first synthesis of the biologically active humulene natural product asteriscunolide D has been accomplished in nine steps without the use of protecting groups. The challenging 11-membered ring was forged via a diastereoselective thionium ion initiated cyclization, which constitutes a formal aldol disconnection to form a strained macrocycle. A stereospecific thioether activation-elimination protocol was developed for selective E-olefin formation, thus providing access to the most biologically active asteriscunolide. The absolute stereochemical configuration was established by the Zn-ProPhenol catalyzed enantioselective addition of methyl propiolate to an aliphatic aldehyde to afford a γ-hydroxy propiolate as a handle for butenolide formation via Ru-catalyzed alkene-alkyne coupling.


Subject(s)
Biological Products/chemical synthesis , Lactones/chemical synthesis , Quaternary Ammonium Compounds/chemistry , Sesquiterpenes/chemical synthesis , Asteraceae/chemistry , Biological Products/chemistry , Cyclization , Ions/chemical synthesis , Ions/chemistry , Lactones/chemistry , Quaternary Ammonium Compounds/chemical synthesis , Sesquiterpenes/chemistry , Stereoisomerism
13.
Org Lett ; 13(17): 4566-9, 2011 Sep 02.
Article in English | MEDLINE | ID: mdl-21834567

ABSTRACT

Enabled by the broad scope of the Pd-catalyzed asymmetric alkylation of meso- and d,l-divinylethylene carbonate, several chiral diene ligands were prepared in two steps from commercial materials. Subsequently, these ligands were evaluated in the Rh-catalyzed asymmetric conjugate addition of boronic acids to enones.


Subject(s)
Boronic Acids/chemistry , Cycloparaffins/chemistry , Hydrocarbons, Cyclic/chemical synthesis , Rhodium/chemistry , Catalysis , Hydrocarbons, Cyclic/chemistry , Ligands , Molecular Structure , Organometallic Compounds/chemistry , Palladium/chemistry , Stereoisomerism
14.
Org Lett ; 13(4): 703-5, 2011 Feb 18.
Article in English | MEDLINE | ID: mdl-21244047

ABSTRACT

Various functionalized steroidal side chains were conveniently accessed by a modified Julia olefination strategy using a common sulfone donor and an appropriate α-branched aldehyde acceptor. For the coupling of these hindered classes of reaction partners (and in contrast to typically observed trends), the benzothiazolyl(BT)-sulfone anion gave superior outcomes compared to the phenyltetrazolyl(PT)-sulfone anion.


Subject(s)
Alkenes/chemistry , Steroids/chemistry , Steroids/chemical synthesis , Sulfones/chemical synthesis , Aldehydes/chemistry , Catalysis , Molecular Structure , Stereoisomerism , Sulfones/chemistry
15.
Steroids ; 76(3): 291-300, 2011 Feb.
Article in English | MEDLINE | ID: mdl-21145335

ABSTRACT

A variety of unnatural bile acid derivatives (9a-9f) was synthesized and used to examine the specificity with which the sea lamprey (Petromyzon marinus) olfactory system detects these compounds. These compounds are analogs of petromyzonol sulfate (PS, 1), a component of the sea lamprey migratory pheromone. Both the stereochemical configuration at C5 (i.e., 5α vs. 5ß) and the extent and sites of oxygenation (hydroxylation or ketonization) of the bile acid derived steroid skeleton were evaluated by screening the compounds for olfactory activity using electro-olfactogram recording. 5ß-Petromyzonol sulfate (9a) elicited a considerable olfactory response at sub-nanomolar concentration. In addition, less oxygenated systems (i.e., 9b-9e) elicited olfactory responses, albeit with less potency. The sea lamprey sex pheromone mimic 9f (5ß-3-ketopetromyzonol sulfate) was also examined and found to produce a much lower olfactory response. Mixture studies conducted with 9a and PS (1) suggest that stimulation is occurring via similar modes of activation, demonstrating a relative lack of specificity for recognition of the allo-configuration (i.e., 5α) in sea lamprey olfaction. This attribute could facilitate design of pheromone analogs to control this invasive species.


Subject(s)
Bile Acids and Salts/chemical synthesis , Cholic Acids/chemical synthesis , Petromyzon/metabolism , Smell/physiology , Animals , Olfactory Mucosa/metabolism
16.
Org Lett ; 10(1): 97-100, 2008 Jan 03.
Article in English | MEDLINE | ID: mdl-18062692

ABSTRACT

An enantioselective synthesis of the highly functionalized trans-decalin core (2) of salvinorin A is described. The tetraene 4 was synthesized in six steps from a known L-(+)-tartaric acid derivative. Three contiguous stereocenters, two of them quaternary, on the trans-decalin were established asymmetrically by an intramolecular Diels-Alder/Tsuji allylation sequence.


Subject(s)
Diterpenes/chemical synthesis , Naphthalenes/chemistry , Diterpenes/chemistry , Diterpenes, Clerodane , Molecular Structure , Stereoisomerism
SELECTION OF CITATIONS
SEARCH DETAIL
...