Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 59
Filter
1.
Burns ; 50(6): 1578-1585, 2024 08.
Article in English | MEDLINE | ID: mdl-38582695

ABSTRACT

BACKGROUND: This study compared a novel topical hydrogel burn dressing (CI-PRJ012) to standard of care (silver sulfadiazine) and to untreated control in a swine thermal burn model, to assess for wound healing properties both in the presence and absence of concomitant bacterial inoculation. METHODS: Eight equal burn wounds were created on six Yorkshire swine. Half the wounds were randomized to post-burn bacterial inoculation. Wounds were subsequently randomized to three treatments groups: no intervention, CI-PRJ012, or silver sulfadiazine cream. At study end, a blinded pathologist evaluated wounds for necrosis and bacterial colonization. RESULTS: When comparing CI-PRJ012 and silver sulfadiazine cream to no treatment, both agents significantly reduced the amount of necrosis and bacteria at 7 days after wound creation (p < 0.01, independently for both). Further, CI-PRJ012 was found to be significantly better than silver sulfadiazine (p < 0.02) in reducing bacterial colonization. For wound necrosis, no significant difference was found between silver sulfadiazine cream and CI-PRJ012 (p = 0.33). CONCLUSIONS: CI-PRJ012 decreases necrosis and bacterial colonization compared to no treatment in a swine model. CI-PRJ012 appeared to perform comparably to silver sulfadiazine. CI-PRJ012, which is easily removed with the application of room-temperature water, may provide clinical advantages over silver sulfadiazine.


Subject(s)
Anti-Bacterial Agents , Burns , Disease Models, Animal , Necrosis , Silver Sulfadiazine , Wound Healing , Animals , Burns/drug therapy , Burns/microbiology , Burns/pathology , Silver Sulfadiazine/therapeutic use , Pilot Projects , Swine , Wound Healing/drug effects , Anti-Bacterial Agents/therapeutic use , Anti-Infective Agents, Local/therapeutic use , Hydrogels/therapeutic use , Bandages , Wound Infection/drug therapy , Wound Infection/prevention & control , Random Allocation
3.
J Med Chem ; 64(14): 10155-10166, 2021 07 22.
Article in English | MEDLINE | ID: mdl-34191513

ABSTRACT

A major antimicrobial resistance mechanism in Gram-negative bacteria is the production of ß-lactamase enzymes. The increasing emergence of ß-lactamase-producing multi-drug-resistant "superbugs" has resulted in increases in costly hospital Emergency Department (ED) visits and hospitalizations due to the requirement for parenteral antibiotic therapy for infections caused by these difficult-to-treat bacteria. To address the lack of outpatient treatment, we initiated an iterative program combining medicinal chemistry, biochemical testing, microbiological profiling, and evaluation of oral pharmacokinetics. Lead optimization focusing on multiple smaller, more lipophilic active compounds, followed by an exploration of oral bioavailability of a variety of their respective prodrugs, provided 36 (VNRX-7145/VNRX-5236 etzadroxil), the prodrug of the boronic acid-containing ß-lactamase inhibitor 5 (VNRX-5236). In vitro and in vivo studies demonstrated that 5 restored the activity of the oral cephalosporin antibiotic ceftibuten against Enterobacterales expressing Ambler class A extended-spectrum ß-lactamases, class A carbapenemases, class C cephalosporinases, and class D oxacillinases.


Subject(s)
Anti-Bacterial Agents/pharmacology , Drug Discovery , Enterobacteriaceae/drug effects , beta-Lactamase Inhibitors/pharmacology , beta-Lactamases/metabolism , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/chemistry , Dose-Response Relationship, Drug , Enterobacteriaceae/enzymology , Microbial Sensitivity Tests , Molecular Structure , Structure-Activity Relationship , beta-Lactamase Inhibitors/chemical synthesis , beta-Lactamase Inhibitors/chemistry
4.
Antimicrob Agents Chemother ; 65(8): e0055221, 2021 07 16.
Article in English | MEDLINE | ID: mdl-34001510

ABSTRACT

There is an urgent need for oral agents to combat resistant Gram-negative pathogens. Here, we describe the characterization of VNRX-5236, a broad-spectrum boronic acid ß-lactamase inhibitor (BLI), and its orally bioavailable etzadroxil prodrug, VNRX-7145. VNRX-7145 is being developed in combination with ceftibuten, an oral cephalosporin, to combat strains of Enterobacterales expressing extended-spectrum ß-lactamases (ESBLs) and serine carbapenemases. VNRX-5236 is a reversible covalent inhibitor of serine ß-lactamases, with inactivation efficiencies on the order of 104 M-1 · sec-1, and prolonged active site residence times (t1/2, 5 to 46 min). The spectrum of inhibition includes Ambler class A ESBLs, class C cephalosporinases, and class A and D carbapenemases (KPC and OXA-48, respectively). Rescue of ceftibuten by VNRX-5236 (fixed at 4 µg/ml) in isogenic strains of Escherichia coli expressing class A, C, or D ß-lactamases demonstrated an expanded spectrum of activity relative to oral comparators, including investigational penems, sulopenem, and tebipenem. VNRX-5236 rescued ceftibuten activity in clinical isolates of Enterobacterales expressing ESBLs (MIC90, 0.25 µg/ml), KPCs (MIC90, 1 µg/ml), class C cephalosporinases (MIC90, 1 µg/ml), and OXA-48-type carbapenemases (MIC90, 1 µg/ml). Frequency of resistance studies demonstrated a low propensity for recovery of resistant variants at 4× the MIC of the ceftibuten/VNRX-5236 combination. In vivo, whereas ceftibuten alone was ineffective (50% effective dose [ED50], >128 mg/kg), ceftibuten/VNRX-7145 administered orally protected mice from lethal septicemia caused by Klebsiella pneumoniae producing KPC carbapenemase (ED50, 12.9 mg/kg). The data demonstrate potent, broad-spectrum rescue of ceftibuten activity by VNRX-5236 in clinical isolates of cephalosporin-resistant and carbapenem-resistant Enterobacterales.


Subject(s)
Cephalosporins , beta-Lactamase Inhibitors , Animals , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Bacterial Proteins , Carbapenems/pharmacology , Ceftibuten , Cephalosporins/pharmacology , Mice , Microbial Sensitivity Tests , Serine , beta-Lactamase Inhibitors/pharmacology , beta-Lactamases/genetics
5.
Nat Commun ; 11(1): 3024, 2020 06 15.
Article in English | MEDLINE | ID: mdl-32541684

ABSTRACT

The canonical mechanistic model explaining potassium channel gating is of a conformational change that alternately dilates and constricts a collar-like intracellular entrance to the pore. It is based on the premise that K+ ions maintain a complete hydration shell while passing between the transmembrane cavity and cytosol, which must be accommodated. To put the canonical model to the test, we locked the conformation of a Kir K+ channel to prevent widening of the narrow collar. Unexpectedly, conduction was unimpaired in the locked channels. In parallel, we employed all-atom molecular dynamics to simulate K+ ions moving along the conduction pathway between the lower cavity and cytosol. During simulations, the constriction did not significantly widen. Instead, transient loss of some water molecules facilitated K+ permeation through the collar. The low free energy barrier to partial dehydration in the absence of conformational change indicates Kir channels are not gated by the canonical mechanism.


Subject(s)
G Protein-Coupled Inwardly-Rectifying Potassium Channels/metabolism , Potassium/metabolism , Cytosol/chemistry , Cytosol/metabolism , Electric Conductivity , Electric Impedance , G Protein-Coupled Inwardly-Rectifying Potassium Channels/chemistry , G Protein-Coupled Inwardly-Rectifying Potassium Channels/genetics , Humans , Ion Transport , Ions/chemistry , Ions/metabolism , Molecular Dynamics Simulation , Potassium/chemistry , Protein Conformation , Water/metabolism
6.
Cell Rep ; 31(1): 107492, 2020 04 07.
Article in English | MEDLINE | ID: mdl-32268090

ABSTRACT

Stimulator of Interferon Genes (STING) is a critical component of host innate immune defense but can contribute to chronic autoimmune or autoinflammatory disease. Once activated, the cyclic guanosine monophosphate (GMP)-adenosine monophosphate (AMP) (cGAMP) synthase (cGAS)-STING pathway induces both type I interferon (IFN) expression and nuclear factor-κB (NF-κB)-mediated cytokine production. Currently, these two signaling arms are thought to be mediated by a single upstream kinase, TANK-binding kinase 1 (TBK1). Here, using genetic and pharmacological approaches, we show that TBK1 alone is dispensable for STING-induced NF-κB responses in human and mouse immune cells, as well as in vivo. We further demonstrate that TBK1 acts redundantly with IκB kinase ε (IKKε) to drive NF-κB upon STING activation. Interestingly, we show that activation of IFN regulatory factor 3 (IRF3) is highly dependent on TBK1 kinase activity, whereas NF-κB is significantly less sensitive to TBK1/IKKε kinase inhibition. Our work redefines signaling events downstream of cGAS-STING. Our findings further suggest that cGAS-STING will need to be targeted directly to effectively ameliorate the inflammation underpinning disorders associated with STING hyperactivity.


Subject(s)
I-kappa B Kinase/metabolism , Protein Serine-Threonine Kinases/metabolism , Animals , Female , HEK293 Cells , Humans , I-kappa B Kinase/physiology , Immunity, Innate , Interferon Regulatory Factor-3/metabolism , Interferon-beta/metabolism , Male , Membrane Proteins/metabolism , Membrane Proteins/physiology , Mice , Mice, Inbred C57BL , Myeloid Cells/metabolism , NF-kappa B/metabolism , Nucleotides, Cyclic/metabolism , Phosphorylation , Protein Serine-Threonine Kinases/physiology , Signal Transduction/immunology
7.
J Med Chem ; 63(6): 2789-2801, 2020 03 26.
Article in English | MEDLINE | ID: mdl-31765155

ABSTRACT

A major resistance mechanism in Gram-negative bacteria is the production of ß-lactamase enzymes. Originally recognized for their ability to hydrolyze penicillins, emergent ß-lactamases can now confer resistance to other ß-lactam drugs, including both cephalosporins and carbapenems. The emergence and global spread of ß-lactamase-producing multi-drug-resistant "superbugs" has caused increased alarm within the medical community due to the high mortality rate associated with these difficult-to-treat bacterial infections. To address this unmet medical need, we initiated an iterative program combining medicinal chemistry, structural biology, biochemical testing, and microbiological profiling to identify broad-spectrum inhibitors of both serine- and metallo-ß-lactamase enzymes. Lead optimization, beginning with narrower-spectrum, weakly active compounds, provided 20 (VNRX-5133, taniborbactam), a boronic-acid-containing pan-spectrum ß-lactamase inhibitor. In vitro and in vivo studies demonstrated that 20 restored the activity of ß-lactam antibiotics against carbapenem-resistant Pseudomonas aeruginosa and carbapenem-resistant Enterobacteriaceae. Taniborbactam is the first pan-spectrum ß-lactamase inhibitor to enter clinical development.


Subject(s)
Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Borinic Acids/chemistry , Borinic Acids/pharmacology , Carboxylic Acids/chemistry , Carboxylic Acids/pharmacology , beta-Lactamase Inhibitors/chemistry , beta-Lactamase Inhibitors/pharmacology , Animals , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/therapeutic use , Bacteria/drug effects , Bacterial Infections/drug therapy , Borinic Acids/chemical synthesis , Borinic Acids/therapeutic use , Carbapenems/pharmacology , Carboxylic Acids/chemical synthesis , Carboxylic Acids/therapeutic use , Humans , Mice , Models, Molecular , beta-Lactam Resistance , beta-Lactamase Inhibitors/chemical synthesis , beta-Lactamase Inhibitors/therapeutic use
8.
Article in English | MEDLINE | ID: mdl-31871094

ABSTRACT

As shifts in the epidemiology of ß-lactamase-mediated resistance continue, carbapenem-resistant Enterobacterales (CRE) and carbapenem-resistant Pseudomonas aeruginosa (CRPA) are the most urgent threats. Although approved ß-lactam (BL)-ß-lactamase inhibitor (BLI) combinations address widespread serine ß-lactamases (SBLs), such as CTX-M-15, none provide broad coverage against either clinically important serine-ß-lactamases (KPC, OXA-48) or clinically important metallo-ß-lactamases (MBLs; e.g., NDM-1). VNRX-5133 (taniborbactam) is a new cyclic boronate BLI that is in clinical development combined with cefepime for the treatment of infections caused by ß-lactamase-producing CRE and CRPA. Taniborbactam is the first BLI with direct inhibitory activity against Ambler class A, B, C, and D enzymes. From biochemical and structural analyses, taniborbactam exploits substrate mimicry while employing distinct mechanisms to inhibit both SBLs and MBLs. It is a reversible covalent inhibitor of SBLs with slow dissociation and a prolonged active-site residence time (half-life, 30 to 105 min), while in MBLs, it behaves as a competitive inhibitor, with inhibitor constant (Ki ) values ranging from 0.019 to 0.081 µM. Inhibition is achieved by mimicking the transition state structure and exploiting interactions with highly conserved active-site residues. In microbiological testing, taniborbactam restored cefepime activity in 33/34 engineered Escherichia coli strains overproducing individual enzymes covering Ambler classes A, B, C, and D, providing up to a 1,024-fold shift in the MIC. Addition of taniborbactam restored the antibacterial activity of cefepime against all 102 Enterobacterales clinical isolates tested and 38/41 P. aeruginosa clinical isolates tested with MIC90s of 1 and 4 µg/ml, respectively, representing ≥256- and ≥32-fold improvements, respectively, in antibacterial activity over that of cefepime alone. The data demonstrate the potent, broad-spectrum rescue of cefepime activity by taniborbactam against clinical isolates of CRE and CRPA.


Subject(s)
Anti-Bacterial Agents/pharmacology , Borinic Acids/pharmacology , Carboxylic Acids/pharmacology , beta-Lactamase Inhibitors/pharmacology , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Cefepime/pharmacology , Microbial Sensitivity Tests , Protein Structure, Secondary , Pseudomonas aeruginosa/drug effects
9.
Nature ; 577(7789): 266-270, 2020 01.
Article in English | MEDLINE | ID: mdl-31827282

ABSTRACT

Acute myeloid leukaemia (AML) is a heterogeneous disease characterized by transcriptional dysregulation that results in a block in differentiation and increased malignant self-renewal. Various epigenetic therapies aimed at reversing these hallmarks of AML have progressed into clinical trials, but most show only modest efficacy owing to an inability to effectively eradicate leukaemia stem cells (LSCs)1. Here, to specifically identify novel dependencies in LSCs, we screened a bespoke library of small hairpin RNAs that target chromatin regulators in a unique ex vivo mouse model of LSCs. We identify the MYST acetyltransferase HBO1 (also known as KAT7 or MYST2) and several known members of the HBO1 protein complex as critical regulators of LSC maintenance. Using CRISPR domain screening and quantitative mass spectrometry, we identified the histone acetyltransferase domain of HBO1 as being essential in the acetylation of histone H3 at K14. H3 acetylated at K14 (H3K14ac) facilitates the processivity of RNA polymerase II to maintain the high expression of key genes (including Hoxa9 and Hoxa10) that help to sustain the functional properties of LSCs. To leverage this dependency therapeutically, we developed a highly potent small-molecule inhibitor of HBO1 and demonstrate its mode of activity as a competitive analogue of acetyl-CoA. Inhibition of HBO1 phenocopied our genetic data and showed efficacy in a broad range of human cell lines and primary AML cells from patients. These biological, structural and chemical insights into a therapeutic target in AML will enable the clinical translation of these findings.


Subject(s)
Histone Acetyltransferases/metabolism , Leukemia, Myeloid, Acute/metabolism , Neoplastic Stem Cells/metabolism , Animals , Cell Line, Tumor , Histone Acetyltransferases/chemistry , Histone Acetyltransferases/genetics , Humans , Leukemia, Myeloid, Acute/genetics , Mice , Mice, Inbred C57BL , Models, Molecular , Protein Structure, Tertiary
10.
Arthritis Rheumatol ; 71(1): 50-62, 2019 01.
Article in English | MEDLINE | ID: mdl-30009417

ABSTRACT

OBJECTIVE: The production of class-switched high-affinity autoantibodies derived from organized germinal centers (GCs) is a hallmark of many autoimmune inflammatory diseases, including rheumatoid arthritis (RA). TANK-binding kinase 1 (TBK-1) is a serine/threonine kinase involved in the maturation of GC follicular helper T (Tfh) cells downstream of inducible costimulator signaling. We undertook this study to assess the therapeutic potential of TBK-1 inhibition using the small-molecule inhibitor WEHI-112 in antibody-dependent models of inflammatory arthritis. METHODS: Using the models of collagen-induced arthritis (CIA), antigen-induced arthritis (AIA), and K/BxN serum-transfer-induced arthritis (STIA), we determined the effectiveness of WEHI-112 at inhibiting clinical and histologic features of arthritis in C57BL/6 and DBA/1 mice. We used immunohistochemistry to characterize GC populations during CIA development, and we used enzyme-linked immunosorbent assays to determine levels of Ig autoantibodies in WEHI-112-treated mice compared to vehicle-treated mice. RESULTS: WEHI-112, a tool compound that is semiselective for TBK-1 but that also has activity against IKKε and JAK2, abolished TBK-1-dependent activation of interferon (IFN) regulatory factor 3 and inhibited type I IFN responses in vitro. In vivo, treatment with WEHI-112 selectively abrogated clinical and histologic features of established, antibody-dependent CIA, but had minimal effects on an antibody-independent model of AIA or on K/BxN STIA. In keeping with these findings, WEHI-112 reduced arthritogenic type II collagen-specific IgG1 and IgG2b antibody production. Furthermore, WEHI-112 altered the GC Tfh cell phenotype and GC B cell function in CIA. CONCLUSION: We report that TBK-1 inhibition using WEHI-112 abrogated antibody-dependent CIA. As WEHI-112 failed to inhibit non-antibody-driven joint inflammation, we conclude that the major effect of this compound was most likely the targeting of TBK-1-mediated mechanisms in the GC reaction. This approach may have therapeutic potential in RA and in other GC-associated autoantibody-driven inflammatory diseases.


Subject(s)
Arthritis, Experimental/immunology , Arthritis, Rheumatoid/immunology , Autoantibodies/drug effects , Germinal Center/drug effects , Protein Kinase Inhibitors/pharmacology , Protein Serine-Threonine Kinases/antagonists & inhibitors , T-Lymphocytes, Helper-Inducer/drug effects , Animals , Autoantibodies/immunology , Azetidines/pharmacology , Collagen Type II , Cyclobutanes/pharmacology , Disease Models, Animal , Enzyme-Linked Immunosorbent Assay , Freund's Adjuvant , Germinal Center/immunology , Immunohistochemistry , Immunologic Factors , In Vitro Techniques , Interferon Regulatory Factor-3/drug effects , Interferon Regulatory Factor-3/immunology , Interferon Type I/drug effects , Interferon Type I/immunology , Janus Kinase Inhibitors/pharmacology , Mice , Mice, Inbred C57BL , Mice, Inbred DBA , Morpholines/pharmacology , Purines , Pyrazoles , Serum Albumin, Bovine , Sulfonamides/pharmacology , T-Lymphocytes, Helper-Inducer/immunology
11.
ACS Med Chem Lett ; 8(12): 1298-1303, 2017 Dec 14.
Article in English | MEDLINE | ID: mdl-29259751

ABSTRACT

A number of diazepines are known to inhibit bromo- and extra-terminal domain (BET) proteins. Their BET inhibitory activity derives from the fusion of an acetyl-lysine mimetic heterocycle onto the diazepine framework. Herein we describe a straightforward, modular synthesis of novel 1,2,3-triazolobenzodiazepines and show that the 1,2,3-triazole acts as an effective acetyl-lysine mimetic heterocycle. Structure-based optimization of this series of compounds led to the development of potent BET bromodomain inhibitors with excellent activity against leukemic cells, concomitant with a reduction in c-MYC expression. These novel benzodiazepines therefore represent a promising class of therapeutic BET inhibitors.

12.
Oncotarget ; 8(35): 57948-57963, 2017 Aug 29.
Article in English | MEDLINE | ID: mdl-28938529

ABSTRACT

Neutropenia represents one of the major dose-limiting toxicities of many current cancer therapies. To circumvent the off-target effects of cytotoxic chemotherapeutics, kinase inhibitors are increasingly being used as an adjunct therapy to target leukemia. In this study, we conducted a screen of leukemic cell lines in parallel with primary neutrophils to identify kinase inhibitors with the capacity to induce apoptosis of myeloid and lymphoid cell lines whilst sparing primary mouse and human neutrophils. We have utilized a high-throughput live cell imaging platform to demonstrate that cytotoxic drugs have limited effects on neutrophil viability but are toxic to hematopoietic progenitor cells, with the exception of the topoisomerase I inhibitor SN-38. The parallel screening of kinase inhibitors revealed that mouse and human neutrophil viability is dependent on cyclin-dependent kinase (CDK) activity but surprisingly only partially dependent on PI3 kinase and JAK/STAT signaling, revealing dominant pathways contributing to neutrophil viability. Mcl-1 haploinsufficiency sensitized neutrophils to CDK inhibition, demonstrating that Mcl-1 is a direct target for CDK inhibitors. This study reveals a therapeutic window for the kinase inhibitors BEZ235, BMS-3, AZD7762, and (R)-BI-2536 to induce apoptosis of leukemia cell lines whilst maintaining immunocompetence and hemostasis.

13.
Mol Cancer Ther ; 16(8): 1610-1622, 2017 08.
Article in English | MEDLINE | ID: mdl-28611104

ABSTRACT

Lung squamous cell carcinoma (SqCC) is a molecularly complex and genomically unstable disease. No targeted therapy is currently approved for lung SqCC, although potential oncogenic drivers of SqCC have been identified, including amplification of the fibroblast growth factor receptor 1 (FGFR1). Reports from a recently completed clinical trial indicate low response rates in patients treated with FGFR tyrosine kinase inhibitors, suggesting inadequacy of FGFR1 amplification as a biomarker of response, or the need for combination treatment. We aimed to develop accurate models of lung SqCC and determine improved targeted therapies for these tumors. We show that detection of FGFR1 mRNA by RNA in situ hybridization is a better predictor of response to FGFR inhibition than FGFR1 gene amplification using clinically relevant patient-derived xenograft (PDX) models of lung SqCC. FGFR1-overexpressing tumors were observed in all histologic subtypes of non-small cell lung cancers (NSCLC) as assessed on a tissue microarray, indicating a broader range of tumors that may respond to FGFR inhibitors. In FGFR1-overexpressing PDX tumors, we observed increased differentiation and reduced proliferation following FGFR inhibition. Combination therapy with cisplatin was able to increase tumor cell death, and dramatically prolonged animal survival compared to single-agent treatment. Our data suggest that FGFR tyrosine kinase inhibitors can benefit NSCLC patients with FGFR1-overexpressing tumors and provides a rationale for clinical trials combining cisplatin with FGFR inhibitors. Mol Cancer Ther; 16(8); 1610-22. ©2017 AACR.


Subject(s)
Carcinoma, Squamous Cell/drug therapy , Cisplatin/therapeutic use , Lung Neoplasms/drug therapy , Receptor, Fibroblast Growth Factor, Type 1/antagonists & inhibitors , Xenograft Model Antitumor Assays , Animals , Carcinoma, Squamous Cell/genetics , Cell Differentiation/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Cisplatin/pharmacology , Genotype , Humans , Lung Neoplasms/genetics , Mice, Inbred NOD , Phosphatidylinositol 3-Kinases/metabolism , Phosphoinositide-3 Kinase Inhibitors , RNA, Messenger/genetics , RNA, Messenger/metabolism , Receptor, Fibroblast Growth Factor, Type 1/genetics , Receptor, Fibroblast Growth Factor, Type 1/metabolism , Survival Analysis
14.
Diabetes ; 66(6): 1650-1660, 2017 06.
Article in English | MEDLINE | ID: mdl-28292965

ABSTRACT

Recent advances in immunotherapeutics have not yet changed the routine management of autoimmune type 1 diabetes. There is an opportunity to repurpose therapeutics used to treat other diseases to treat type 1 diabetes, especially when there is evidence for overlapping mechanisms. Janus kinase (JAK) 1/JAK2 inhibitors are in development or clinical use for indications including rheumatoid arthritis. There is good evidence for activation of the JAK1/JAK2 and signal transducer and activator of transcription (STAT) 1 pathway in human type 1 diabetes and in mouse models, especially in ß-cells. We tested the hypothesis that using these drugs to block the JAK-STAT pathway would prevent autoimmune diabetes. The JAK1/JAK2 inhibitor AZD1480 blocked the effect of cytokines on mouse and human ß-cells by inhibiting MHC class I upregulation. This prevented the direct interaction between CD8+ T cells and ß-cells, and reduced immune cell infiltration into islets. NOD mice treated with AZD1480 were protected from autoimmune diabetes, and diabetes was reversed in newly diagnosed NOD mice. This provides mechanistic groundwork for repurposing clinically approved JAK1/JAK2 inhibitors for type 1 diabetes.


Subject(s)
Blood Glucose/metabolism , CD8-Positive T-Lymphocytes/drug effects , Diabetes Mellitus, Type 1/immunology , Histocompatibility Antigens Class II/drug effects , Insulin-Secreting Cells/drug effects , Pyrazoles/pharmacology , Pyrimidines/pharmacology , Animals , Blotting, Western , CD8-Positive T-Lymphocytes/immunology , Chemokine CXCL10/immunology , Cytokines/immunology , Diabetes Mellitus, Type 1/metabolism , Flow Cytometry , Histocompatibility Antigens Class II/genetics , Histocompatibility Antigens Class II/immunology , Humans , Immunohistochemistry , In Vitro Techniques , Insulin-Secreting Cells/metabolism , Islets of Langerhans/cytology , Islets of Langerhans/drug effects , Islets of Langerhans/immunology , Janus Kinase 1/antagonists & inhibitors , Janus Kinase 2/antagonists & inhibitors , Mice , Mice, Inbred NOD , Up-Regulation
15.
J Trauma Acute Care Surg ; 82(6): 1129-1137, 2017 06.
Article in English | MEDLINE | ID: mdl-28338596

ABSTRACT

BACKGROUND: Acute appendicitis continues to constitute a diagnostic and therapeutic challenge. The aim of this study was to synthesize evidence from randomized controlled trials (RCTs) comparing nonoperative versus surgical management of uncomplicated acute appendicitis in adult patients. METHODS: A systematic literature search of the PubMed, Cochrane, and Scopus databases was performed with respect to the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-analyses) statement (end-of-search date: January 29, 2017). Data on the study design, interventions, participants, and outcomes were extracted by two independent reviewers. The random-effects model (DerSimonian-Laird) was used to calculate pooled effect estimates when substantial heterogeneity was encountered; otherwise, the fixed-effects (Mantel-Haenszel) model was implemented. Quality assessment of included RCTs was performed using the modified Jadad scale. RESULTS: Five RCTs were included in this review. Overall, 1,430 adult patients with uncomplicated acute appendicitis underwent either nonoperative (n = 727) or operative management (n = 703). Treatment efficacy at 1-year follow-up was significantly lower (63.8%) for antibiotics compared with the surgery group (93%) (risk ratio [RR], 0.68; 95% confidence interval [CI], 0.60-0.77; p < 0.001). Overall complications were significantly higher in the surgery group (166/703 [23.6%]) compared with the antibiotics group (56/727 [7.7%]) (RR, 0.32; 95% CI, 0.24-0.43; p < 0.001). No difference was found between the two treatment modalities in terms of perforated appendicitis rates (RR, 0.52; 95% CI, 0.14-1.92), length of hospital stay (weighted mean difference [WMD], 0.20; 95% CI, -0.16 to 0.56), duration of pain (WMD, 0.22; 95% CI, -5.30 to -5.73), and sick leave (WMD, -2; 95% CI, -5.2 to 1.1). CONCLUSIONS: Conservative management of uncomplicated appendicitis in adults warrants further study. Addressing patients' expectations via a shared decision-making process is a crucial step in optimizing nonoperative outcomes. LEVEL OF EVIDENCE: Systematic review, level II.


Subject(s)
Anti-Bacterial Agents/therapeutic use , Appendectomy , Appendicitis/drug therapy , Appendicitis/surgery , Humans , Treatment Outcome
16.
Blood ; 129(13): 1823-1830, 2017 03 30.
Article in English | MEDLINE | ID: mdl-28188131

ABSTRACT

Patients with myelofibrosis (MF) often develop anemia and frequently become dependent on red blood cell transfusions. Results from a phase 2 study for the treatment of MF with the Janus kinase 1/2 (JAK1/2) inhibitor momelotinib (MMB) demonstrated that MMB treatment ameliorated anemia, which was unexpected for a JAK1/2 inhibitor, because erythropoietin-mediated JAK2 signaling is essential for erythropoiesis. Using a rat model of anemia of chronic disease, we demonstrated that MMB treatment can normalize hemoglobin and red blood cell numbers. We found that this positive effect is driven by direct inhibition of the bone morphogenic protein receptor kinase activin A receptor, type I (ACVR1), and the subsequent reduction of hepatocyte hepcidin production. Of note, ruxolitinib, a JAK1/2 inhibitor approved for the treatment of MF, had no inhibitory activity on this pathway. Further, we demonstrated the effect of MMB is not mediated by direct inhibition of JAK2-mediated ferroportin (FPN1) degradation, because neither MMB treatment nor myeloid-specific deletion of JAK2 affected FPN1 expression. Our data support the hypothesis that the improvement of inflammatory anemia by MMB results from inhibition of ACVR1-mediated hepcidin expression in the liver, which leads to increased mobilization of sequestered iron from cellular stores and subsequent stimulation of erythropoiesis.


Subject(s)
Anemia/drug therapy , Benzamides/therapeutic use , Bone Morphogenetic Protein Receptors, Type I/antagonists & inhibitors , Hepcidins/biosynthesis , Pyrimidines/therapeutic use , Activin Receptors, Type I/antagonists & inhibitors , Animals , Benzamides/pharmacology , Chronic Disease , Hepatocytes/metabolism , Iron/metabolism , Primary Myelofibrosis/complications , Pyrimidines/pharmacology , Rats
17.
Structure ; 24(9): 1550-61, 2016 09 06.
Article in English | MEDLINE | ID: mdl-27545623

ABSTRACT

Doublecortin-like kinase 1 (DCLK1) is a serine/threonine kinase that belongs to the family of microtubule-associated proteins. Originally identified for its role in neurogenesis, DCLK1 has recently been shown to regulate biological processes outside of the CNS. DCLK1 is among the 15 most common putative driver genes for gastric cancers and is highly mutated across various other human cancers. However, our present understanding of how DCLK1 dysfunction leads to tumorigenesis is limited. Here, we provide evidence that DCLK1 kinase activity negatively regulates microtubule polymerization. We present the crystal structure of the DCLK1 kinase domain at 1.7 Å resolution, providing detailed insight into the ATP-binding site that will serve as a framework for future drug design. This structure also allowed for the mapping of cancer-causing mutations within the kinase domain, suggesting that a loss of kinase function may contribute to tumorigenesis.


Subject(s)
Adenosine Triphosphate/chemistry , Antineoplastic Agents/pharmacology , Intracellular Signaling Peptides and Proteins/antagonists & inhibitors , Mutation , Protein Serine-Threonine Kinases/antagonists & inhibitors , Stomach Neoplasms/drug therapy , Adenosine Triphosphate/metabolism , Amino Acid Motifs , Animals , Antineoplastic Agents/chemistry , Benzodiazepinones/chemistry , Benzodiazepinones/pharmacology , Binding Sites , Crystallography, X-Ray , Doublecortin-Like Kinases , Gene Expression , HEK293 Cells , Humans , Intracellular Signaling Peptides and Proteins/chemistry , Intracellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/metabolism , Mice , Mice, Inbred C57BL , Mice, Transgenic , Microtubules/drug effects , Microtubules/metabolism , Microtubules/ultrastructure , Models, Molecular , Protein Binding , Protein Domains , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/pharmacology , Protein Serine-Threonine Kinases/chemistry , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Protein Structure, Secondary , Pyrimidines/chemistry , Pyrimidines/pharmacology , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Stomach Neoplasms/enzymology , Stomach Neoplasms/genetics , Stomach Neoplasms/pathology , Substrate Specificity , Tubulin Modulators/chemistry , Tubulin Modulators/pharmacology , Xenograft Model Antitumor Assays
18.
Nat Chem Biol ; 12(7): 469-70, 2016 06 17.
Article in English | MEDLINE | ID: mdl-27315535
19.
Nat Immunol ; 17(7): 816-24, 2016 07.
Article in English | MEDLINE | ID: mdl-27213690

ABSTRACT

The detection of aberrant cells by natural killer (NK) cells is controlled by the integration of signals from activating and inhibitory ligands and from cytokines such as IL-15. We identified cytokine-inducible SH2-containing protein (CIS, encoded by Cish) as a critical negative regulator of IL-15 signaling in NK cells. Cish was rapidly induced in response to IL-15, and deletion of Cish rendered NK cells hypersensitive to IL-15, as evidenced by enhanced proliferation, survival, IFN-γ production and cytotoxicity toward tumors. This was associated with increased JAK-STAT signaling in NK cells in which Cish was deleted. Correspondingly, CIS interacted with the tyrosine kinase JAK1, inhibiting its enzymatic activity and targeting JAK for proteasomal degradation. Cish(-/-) mice were resistant to melanoma, prostate and breast cancer metastasis in vivo, and this was intrinsic to NK cell activity. Our data uncover a potent intracellular checkpoint in NK cell-mediated tumor immunity and suggest possibilities for new cancer immunotherapies directed at blocking CIS function.


Subject(s)
Immunotherapy/methods , Killer Cells, Natural/immunology , Neoplasms/therapy , Suppressor of Cytokine Signaling Proteins/metabolism , Animals , Cell Proliferation/genetics , Cytotoxicity, Immunologic/genetics , Immunologic Surveillance , Interferon-gamma/metabolism , Interleukin-15/metabolism , Janus Kinase 1/metabolism , Lymphocyte Activation/genetics , Melanoma, Experimental , Mice , Mice, Inbred C57BL , Mice, Knockout , Molecular Targeted Therapy , Neoplasms/immunology , Signal Transduction/genetics , Suppressor of Cytokine Signaling Proteins/genetics
20.
Bioorg Med Chem ; 23(19): 6280-96, 2015 Oct 01.
Article in English | MEDLINE | ID: mdl-26349627

ABSTRACT

The serine-threonine kinase CDK9 is a target of emerging interest for the development of anti-cancer drugs. There are multiple lines of evidence linking CDK9 activity to cancer, including the essential role this kinase plays in transcriptional regulation through phosphorylation of the C-terminal domain (CTD) of RNA polymerase II. Indeed, inhibition of CDK9 has been shown to result in a reduction of short-lived proteins such as the pro-survival protein Mcl-1 in malignant cells leading to the induction of apoptosis. In this work we report our initial studies towards the discovery of selective CDK9 inhibitors, starting from the known multi-kinase inhibitor PIK-75 which possesses potent CDK9 activity. Our series is based on a pyrazolo[1,5-a]pyrimidine nucleus and, importantly, the resultant lead compound 18b is devoid of the structural liabilities present in PIK-75 and possesses greater selectivity.


Subject(s)
Antineoplastic Agents/chemistry , Cyclin-Dependent Kinase 9/antagonists & inhibitors , Enzyme Inhibitors/chemistry , Pyrazoles/chemistry , Pyrimidines/chemistry , Antineoplastic Agents/metabolism , Antineoplastic Agents/pharmacology , Binding Sites , Cell Line , Cell Survival/drug effects , Cyclin-Dependent Kinase 9/genetics , Cyclin-Dependent Kinase 9/metabolism , Drug Evaluation, Preclinical , Enzyme Inhibitors/metabolism , Enzyme Inhibitors/pharmacology , Humans , Hydrazones/chemistry , Hydrazones/metabolism , Molecular Docking Simulation , Protein Binding , Protein Structure, Tertiary , Pyrazoles/metabolism , Pyrazoles/pharmacology , Pyrimidines/metabolism , Pyrimidines/pharmacology , Recombinant Proteins/biosynthesis , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Structure-Activity Relationship , Sulfonamides/chemistry , Sulfonamides/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...