Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Cytometry B Clin Cytom ; 104(6): 426-439, 2023 11.
Article in English | MEDLINE | ID: mdl-37766649

ABSTRACT

BACKGROUND: Measurable residual disease (MRD) assessed by multiparametric flow cytometry (MFC) has gained importance in clinical decision-making for acute myeloid leukemia (AML) patients. However, complying with the recent In Vitro Diagnostic Regulations (IVDR) in Europe and Food and Drug Administration (FDA) guidance in the United States requires rigorous validation prior to their use in investigational clinical trials and diagnostics. Validating AML MRD-MFC assays poses challenges due to the unique underlying disease biology and paucity of patient specimens. In this study, we describe an experimental framework for validation that meets regulatory expectations. METHODS: Our validation efforts focused on evaluating assay accuracy, analytical specificity, analytical and functional sensitivity (limit of blank (LoB), detection (LLoD) and quantitation (LLoQ)), precision, linearity, sample/reagent stability and establishing the assay background frequencies. RESULTS: Correlation between different MFC methods was highly significant (r = 0.99 for %blasts and r = 0.93 for %LAIPs). The analysis of LAIP specificity accurately discriminated from negative control cells. The assay demonstrated a LoB of 0.03, LLoD of 0.04, and LLoQ of 0.1%. Precision experiments yielded highly reproducible results (Coefficient of Variation <20%). Stability experiments demonstrated reliable measurement of samples up to 96 h from collection. Furthermore, the reference range of LAIP frequencies in non-AML patients was below 0.1%, ranging from 0.0% to 0.04%. CONCLUSION: In this manuscript, we present the validation of an AML MFC-MRD assay using BM/PB patient specimens, adhering to best practices. Our approach is expected to assist other laboratories in expediting their validation activities to fulfill recent health authority guidelines.


Subject(s)
Leukemia, Myeloid, Acute , Humans , Flow Cytometry/methods , Leukemia, Myeloid, Acute/diagnosis , Neoplasm, Residual/diagnosis , Immunophenotyping
2.
Cytometry B Clin Cytom ; 100(1): 72-78, 2021 01.
Article in English | MEDLINE | ID: mdl-32573972

ABSTRACT

Exceptional clinical responses produced by the first chimeric antigen receptor T [CAR-T] cell therapies, and their entry into commercial markets prompted a logarithmic increase in the number of next generation CAR-T clinical trials. As a result, there is a growing interest in understanding the analytical approaches utilized for reliable monitoring of these "living" drugs, and the challenges encountered during their clinical development. Multiparametric flow cytometry (MFC) assays have played a crucial role in understanding the phenotype and function of first approved CAR-T therapies. Herein, three main areas for monitoring CAR-T therapies in clinical trials are discussed: (1) analytical considerations critical for development of MFC assays for the reliable enumeration of CAR-T levels, (2) operational challenges associated with clinical trial sampling and transportation, and (3) differential cellular kinetics observed by MFC and qPCR analyses and their relationship with efficacy (measurable residual disease levels). Initial experiences described here may enable design of fit-for-purpose tools and help to more rapidly advance the development of next generation CAR-T therapies.


Subject(s)
Flow Cytometry , Immunotherapy, Adoptive , Clinical Trials as Topic , Humans , Kinetics , Receptors, Chimeric Antigen , T-Lymphocytes
3.
Cancer Res ; 66(18): 9162-70, 2006 Sep 15.
Article in English | MEDLINE | ID: mdl-16982759

ABSTRACT

RON is a member of the c-MET receptor tyrosine kinase family. Like c-MET, RON is expressed by a variety of epithelial-derived tumors and cancer cell lines and it is thought to play a functional role in tumorigenesis. To date, antagonists of RON activity have not been tested in vivo to validate RON as a potential cancer target. In this report, we used an antibody phage display library to generate IMC-41A10, a human immunoglobulin G1 (IgG1) antibody that binds with high affinity (ED50 = 0.15 nmol/L) to RON and effectively blocks interaction with its ligand, macrophage-stimulating protein (MSP; IC50 = 2 nmol/L). We found IMC-41A10 to be a potent inhibitor of receptor and downstream signaling, cell migration, and tumorigenesis. It antagonized MSP-induced phosphorylation of RON, mitogen-activated protein kinase (MAPK), and AKT in several cancer cell lines. In HT-29 colon, NCI-H292 lung, and BXPC-3 pancreatic cancer xenograft tumor models, IMC-41A10 inhibited tumor growth by 50% to 60% as a single agent, and in BXPC-3 xenografts, it led to tumor regressions when combined with Erbitux. Western blot analyses of HT-29 and NCI-H292 xenograft tumors treated with IMC-41A10 revealed a decrease in MAPK phosphorylation compared with control IgG-treated tumors, suggesting that inhibition of MAPK activity may be required for the antitumor activity of IMC-41A10. To our knowledge, this is the first demonstration that a RON antagonist and specifically an inhibitory antibody of RON negatively affects tumorigenesis. Another major contribution of this report is an extensive analysis of RON expression in approximately 100 cancer cell lines and approximately 300 patient tumor samples representing 10 major cancer types. Taken together, our results highlight the potential therapeutic usefulness of RON activity inhibition in human cancers.


Subject(s)
Antibodies, Monoclonal/pharmacology , Receptor Protein-Tyrosine Kinases/antagonists & inhibitors , Receptor Protein-Tyrosine Kinases/immunology , Animals , Antibodies, Monoclonal/immunology , Cell Line, Tumor , Cell Movement/drug effects , Cell Movement/immunology , HT29 Cells , Hepatocyte Growth Factor/antagonists & inhibitors , Hepatocyte Growth Factor/metabolism , Humans , Immunoglobulin Fragments/immunology , Immunoglobulin G/immunology , Immunoglobulin G/pharmacology , Mice , Mitogen-Activated Protein Kinases/antagonists & inhibitors , Mitogen-Activated Protein Kinases/metabolism , NIH 3T3 Cells , Peptide Library , Phosphorylation , Proto-Oncogene Proteins/antagonists & inhibitors , Proto-Oncogene Proteins/metabolism , Receptor Protein-Tyrosine Kinases/metabolism , Xenograft Model Antitumor Assays
SELECTION OF CITATIONS
SEARCH DETAIL
...