Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Inorg Chem ; 60(10): 7051-7061, 2021 May 17.
Article in English | MEDLINE | ID: mdl-33891813

ABSTRACT

Solid-state structures find a self-assembled tetrameric nickel cage with carboxylate linkages, [Ni(N2S'O)I(CH3CN)]4 ([Ni-I]40), resulting from sulfur acetylation by sodium iodoacetate of an [NiN2S]22+ dimer in acetonitrile. Various synthetic routes to the tetramer, best described from XRD as a molecular square, were discovered to generate the hexacoordinate nickel units ligated by N2Sthioether, iodide, and two carboxylate oxygens, one of which is the bridge from the adjacent nickel unit in [Ni-I]40. Removal of the four iodides by silver ion precipitation yields an analogous species but with an additional vacant coordination site, [Ni-Solv]+, a cation but with coordinated solvent molecules. This also recrystallizes as the tetramer [Ni-Solv]44+. In solution, dissociation into the (presumed) monomer occurs, with coordinating solvents occupying the vacant site [Ni(N2S'O)I(solv)]0, ([Ni-I]0). Hydrodynamic radii determined from 1H DOSY NMR data suggest that monomeric units are present as well in CD2Cl2. Evans method magnetism values are consistent with triplet spin states in polar solvents; however, in CD2Cl2 solutions no paramagnetism is evident. The abilities of [Ni-I]40 and [Ni-Solv]44+ to serve as sources of electrocatalysts, or precatalysts, for the hydrogen evolution reaction (HER) were explored. Cyclic voltammetry responses and bulk coulometry with gas chromatographic analysis demonstrated that a stronger acid, trifluoroacetic acid, as a proton source resulted in H2 production from both electroprecatalysts; however, electrocatalysis developed primarily from uncharacterized deposits on the electrode. With acetic acid as a proton source, the major contribution to the HER is from homogeneous electrocatalysis. Overpotentials of 490 mV were obtained for both the solution-phase [Ni-I]0 and [Ni-Solv]+. While the electrocatalyst derived from [Ni-Solv]+ has a substantially higher TOF (102 s-1) than [Ni-I]0 (19 s-1), it has a shorter catalytically active lifespan (4 h) in comparison to [Ni-I]0 (>18 h).

2.
J Am Chem Soc ; 140(49): 17040-17050, 2018 12 12.
Article in English | MEDLINE | ID: mdl-30427681

ABSTRACT

Incorporation of the triad of redox activity, hemilability, and proton responsivity into a single ligand scaffold is reported. Due to this triad, the complexes Fe(PyrrPDI)(CO)2 (3) and Fe(MorPDI)(CO)2 (4) display 40-fold enhancements in the initial rate of NO2- reduction, with respect to Fe(MeOPDI)(CO)2 (7). Utilizing the proper sterics and p Ka of the pendant base(s) to introduce hemilability into our ligand scaffolds, we report unusual {FeNO} x mononitrosyl iron complexes (MNICs) as intermediates in the NO2- reduction reaction. The {FeNO} x species behave spectroscopically and computationally similar to {FeNO}7, an unusual intermediate-spin Fe(III) coupled to triplet NO- and a singly reduced PDI ligand. These {FeNO} x MNICs facilitate enhancements in the initial rate.


Subject(s)
Coordination Complexes/chemistry , Nitrites/chemistry , Protons , Coordination Complexes/chemical synthesis , Density Functional Theory , Iron/chemistry , Kinetics , Ligands , Models, Chemical , Nitric Oxide/chemical synthesis , Oxidation-Reduction
3.
Inorg Chem ; 57(16): 9601-9610, 2018 Aug 20.
Article in English | MEDLINE | ID: mdl-29608297

ABSTRACT

Metal complexes composed of redox-active pyridinediimine (PDI) ligands are capable of forming ligand-centered radicals. In this Forum article, we demonstrate that integration of these types of redox-active sites with bioinspired secondary coordination sphere motifs produce direduced complexes, where the reduction potential of the ligand-based redox sites is uncoupled from the secondary coordination sphere. The utility of such ligand design was explored by encapsulating redox-inactive Lewis acidic cations via installation of a pendant benzo-15-crown-5 in the secondary coordination sphere of a series of Fe(PDI) complexes. Fe(15bz5PDI)(CO)2 was shown to encapsulate the redox-inactive alkali ion, Na+, causing only modest (31 mV) anodic shifts in the ligand-based redox-active sites. By uncoupling the Lewis acidic sites from the ligand-based redox sites, the pendant redox-inactive ion, Na+, can entice the corresponding counterion, NO2-, for reduction to NO. The subsequent initial rate analysis reveals an acceleration in anion reduction, confirming this hypothesis.

SELECTION OF CITATIONS
SEARCH DETAIL