Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Spine (Phila Pa 1976) ; 37(8): 654-9, 2012 Apr 15.
Article in English | MEDLINE | ID: mdl-21857408

ABSTRACT

STUDY DESIGN: Descriptive laboratory study. OBJECTIVE: To determine whether the placement of padding beneath the occiput after helmet removal is an effective intervention to maintain neutral sagittal cervical spine alignment in a position comparable with the helmeted condition. SUMMARY OF BACKGROUND DATA: Current on-field recommendations for managing football athletes with suspected cervical spine injuries call for face mask removal, rather than helmet removal, because the combination of helmet and shoulder pads has been shown to maintain neutral cervical alignment. Therefore, in cases when helmet removal is required, recommendations also call for shoulder pad removal. Because removal of equipment causes motion, any technique that postpones the need to remove the shoulder pads would reduce prehospital motion. METHODS: Four lateral radiographs of 20 male participants were obtained (age = 23.6 ± 2.7 years). Radiographs of participants wearing shoulder pads and helmet were first obtained. The helmet was removed and radiographs of participants with occipital padding were obtained immediately and 20 minutes later and finally without occipital padding. Cobb angle measurements for C2-C6 vertebral segments were determined by an orthopedic spine surgeon blinded to the study's purpose. Intraobserver reliability was determined using intraclass coefficient analysis. Measurements were analyzed using a 1×4 repeated-measures analysis of variance and post hoc pairwise comparisons with Bonferroni correction. RESULTS: Intraobserver analysis showed excellent reliability (intraclass correlation = 1.0; 95% confidence interval [CI], 0.999-1.0). Repeated-measures analysis of variance detected significant differences (F(3,17) = 13.34; P < 0.001). Pairwise comparisons revealed no differences in cervical alignment (all measurements reported reflect lordosis) when comparing the baseline helmeted condition (10.1° ± 8.7°; 95% CI, 6.0-14.1) with the padded conditions. Measurements taken after removal of occipital padding (14.4° ± 8.1°; 95% CI, 10.6-18.2) demonstrated a significant increase in cervical lordosis compared with the immediate padded measurement (9.5° ± 6.9°; 95% CI, 6.3-12.7; P = 0.011) and the 20-minute padded measurement (6.5° ± 6.8°; 95% CI, 3.4-9.7; P < 0.001). CONCLUSION: Although face mask removal remains the standard, if it becomes necessary to remove the football helmet in the field, occipital padding (along with full body/head immobilization techniques) may be used to limit cervical lordosis, allowing safe delay of shoulder pad removal.


Subject(s)
Cervical Vertebrae/injuries , Football/injuries , Head Protective Devices , Immobilization/methods , Spinal Injuries/therapy , Adult , Cervical Vertebrae/diagnostic imaging , Humans , Male , Radiography , Spinal Injuries/diagnostic imaging
2.
Prehosp Emerg Care ; 15(2): 166-74, 2011.
Article in English | MEDLINE | ID: mdl-21294629

ABSTRACT

OBJECTIVE: To compare the Eject Helmet Removal (EHR) System with manual football helmet removal. METHODS: This quasiexperimental counterbalanced study was conducted in a controlled laboratory setting. Thirty certified athletic trainers (17 men and 13 women; mean ± standard deviation age: 33.03 ± 10.02 years; height: 174.53 ± 12.04 cm; mass: 85.19 ± 19.84 kg) participated after providing informed consent. Participants removed a Riddell Revolution IQ football helmet from a healthy model two times each under two conditions: manual helmet removal (MHR) and removal with the EHR system. A six-camera, three-dimensional motion capture system was used to record range of motion (ROM) of the head. A digital stopwatch was used to time trials and to record a split time associated with EHR system bladder insertion. A modified Borg CR10 scale was used to measure the rating of perceived exertion (RPE). Mean values were created for each variable. Three pairwise t-tests with Bonferroni-corrected alpha levels tested for differences between time for removal, split time, and RPE. A 2 x 3 (condition x plane) totally within-subjects repeated-measures design analysis of variance (ANOVA) tested for differences in head ROM between the sagittal, frontal, and transverse planes. Analyses were performed using SPSS (version 18.0) (alpha = 0.05). RESULTS: There was no statistically significant difference in perceived difficulty between EHR (RPE = 2.73) and MHR (RPE = 2.55) (t(29) = 0.76; p = 0.45; d = 0.20). Manual helmet removal was, on average, 28.95 seconds faster than EHR (t(29) = 11.44; p < 0.001). Head ROM was greater during EHR compared with MHR in the sagittal (t(29) = 4.57; p < 0.001), frontal (t(29) = 5.90; p < 0.001), and transverse (t(29) = 8.34; p < 0.001) planes. Head ROM was also greater during the helmet-removal portion of EHR in the frontal (t(29) = 4.44; p < 0.001) and transverse (t(29) = 5.99; p < 0.001) planes, compared with MHR. Regardless of technique, sagittal-plane head ROM was greater than frontal- and transverse-plane movements (F(2,58) = 241.47; p < 0.001). CONCLUSIONS: Removing a helmet manually is faster and creates slightly less motion than removing a helmet using the Eject system. Both techniques were equally easy to use. Future research should analyze the performance of the Eject system in other styles of football helmets and in helmets used in other sports such as lacrosse, motorsports, and ice hockey.


Subject(s)
Craniocerebral Trauma , Emergency Medical Services/methods , Football/injuries , Head Protective Devices , Neck Injuries , Sports Medicine/methods , Adult , Analysis of Variance , Athletic Injuries , Cervical Vertebrae/injuries , Equipment Design , Female , Health Status Indicators , Humans , Male , Spinal Injuries , Sports Medicine/instrumentation
SELECTION OF CITATIONS
SEARCH DETAIL
...