Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
1.
JCI Insight ; 9(13)2024 May 30.
Article in English | MEDLINE | ID: mdl-38815134

ABSTRACT

The nonphysiological nutrient levels found in traditional culture media have been shown to affect numerous aspects of cancer cell physiology, including how cells respond to certain therapeutic agents. Here, we comprehensively evaluated how physiological nutrient levels affect therapeutic response by performing drug screening in human plasma-like medium. We observed dramatic nutrient-dependent changes in sensitivity to a variety of FDA-approved and clinically trialed compounds, including rigosertib, an experimental cancer therapeutic that recently failed in phase III clinical trials. Mechanistically, we found that the ability of rigosertib to destabilize microtubules is strongly inhibited by the purine metabolism end product uric acid, which is uniquely abundant in humans relative to traditional in vitro and in vivo cancer models. These results demonstrate the broad and dramatic effects nutrient levels can have on drug response and how incorporation of human-specific physiological nutrient medium might help identify compounds whose efficacy could be influenced in humans.


Subject(s)
Glycine , Sulfones , Uric Acid , Humans , Uric Acid/metabolism , Glycine/pharmacology , Glycine/analogs & derivatives , Sulfones/pharmacology , Culture Media , Drug Evaluation, Preclinical/methods , Cell Line, Tumor , Antineoplastic Agents/pharmacology
2.
bioRxiv ; 2023 Oct 11.
Article in English | MEDLINE | ID: mdl-37873453

ABSTRACT

The non-essential amino acid serine is a critical nutrient for cancer cells due to its diverse biosynthetic functions. While some tumors can synthesize serine de novo, others are auxotrophic for serine and therefore reliant on the uptake of exogenous serine. Importantly, however, the transporter(s) that mediate serine uptake in cancer cells are not known. Here, we characterize the amino acid transporter ASCT2 (coded for by the gene SLC1A5) as the primary serine transporter in cancer cells. ASCT2 is well-known as a glutamine transporter in cancer, and our work demonstrates that serine and glutamine compete for uptake through ASCT2. We further show that ASCT2-mediated serine uptake is essential for purine nucleotide biosynthesis and that ERα promotes serine uptake by directly activating SLC1A5 transcription. Together, our work defines an additional important role for ASCT2 as a serine transporter in cancer and evaluates ASCT2 as a potential therapeutic target in serine metabolism.

3.
bioRxiv ; 2023 Jul 28.
Article in English | MEDLINE | ID: mdl-37546939

ABSTRACT

The non-physiological nutrient levels found in traditional culture media have been shown to affect numerous aspects of cancer cell physiology, including how cells respond to certain therapeutic agents. Here, we comprehensively evaluated how physiological nutrient levels impact therapeutic response by performing drug screening in human plasma-like medium (HPLM). We observed dramatic nutrient-dependent changes in sensitivity to a variety of FDA-approved and clinically trialed compounds, including rigosertib, an experimental cancer therapeutic that has recently failed in phase 3 clinical trials. Mechanistically, we found that the ability of rigosertib to destabilize microtubules is strongly inhibited by the purine metabolism waste product uric acid, which is uniquely abundant in humans relative to traditional in vitro and in vivo cancer models. Structural modelling studies suggest that uric acid interacts with the tubulin-rigosertib complex and may act as an uncompetitive inhibitor of rigosertib. These results offer a possible explanation for the failure of rigosertib in clinical trials and demonstrate the utility of physiological media to achieve in vitro results that better represent human therapeutic responses.

4.
Nat Biotechnol ; 41(10): 1457-1464, 2023 Oct.
Article in English | MEDLINE | ID: mdl-36747096

ABSTRACT

DNA comprises molecular information stored in genetic and epigenetic bases, both of which are vital to our understanding of biology. Most DNA sequencing approaches address either genetics or epigenetics and thus capture incomplete information. Methods widely used to detect epigenetic DNA bases fail to capture common C-to-T mutations or distinguish 5-methylcytosine from 5-hydroxymethylcytosine. We present a single base-resolution sequencing methodology that sequences complete genetics and the two most common cytosine modifications in a single workflow. DNA is copied and bases are enzymatically converted. Coupled decoding of bases across the original and copy strand provides a phased digital readout. Methods are demonstrated on human genomic DNA and cell-free DNA from a blood sample of a patient with cancer. The approach is accurate, requires low DNA input and has a simple workflow and analysis pipeline. Simultaneous, phased reading of genetic and epigenetic bases provides a more complete picture of the information stored in genomes and has applications throughout biomedicine.

5.
Cell Rep ; 38(3): 110278, 2022 01 18.
Article in English | MEDLINE | ID: mdl-35045283

ABSTRACT

A major challenge of targeting metabolism for cancer therapy is pathway redundancy, in which multiple sources of critical nutrients can limit the effectiveness of some metabolism-targeted therapies. Here, we analyze lineage-dependent gene expression in human breast tumors to identify differences in metabolic gene expression that may limit pathway redundancy and create therapeutic vulnerabilities. We find that the serine synthesis pathway gene PSAT1 is the most depleted metabolic gene in luminal breast tumors relative to basal tumors. Low PSAT1 prevents de novo serine biosynthesis and sensitizes luminal breast cancer cells to serine and glycine starvation in vitro and in vivo. This PSAT1 expression disparity preexists in the putative cells of origin of basal and luminal tumors and is due to luminal-specific hypermethylation of the PSAT1 gene. Our data demonstrate that luminal breast tumors are auxotrophic for serine and may be uniquely sensitive to therapies targeting serine availability.


Subject(s)
Breast Neoplasms/metabolism , Serine/metabolism , Transaminases/metabolism , Breast Neoplasms/pathology , Female , Humans
6.
Blood ; 121(1): 188-96, 2013 Jan 03.
Article in English | MEDLINE | ID: mdl-23160460

ABSTRACT

Wnt signaling is involved in numerous aspects of vertebrate development and homeostasis, including the formation and function of blood cells. Here, we show that canonical and noncanonical Wnt signaling pathways are present and functional in megakaryocytes (MKs), with several Wnt effectors displaying MK-restricted expression. Using the CHRF288-11 cell line as a model for human MKs, the canonical Wnt3a signal was found to induce a time and dose-dependent increase in ß-catenin expression. ß-catenin accumulation was inhibited by the canonical antagonist dickkopf-1 (DKK1) and by the noncanonical agonist Wnt5a. Whole genome expression analysis demonstrated that Wnt3a and Wnt5a regulated distinct patterns of gene expression in MKs, and revealed a further interplay between canonical and noncanonical Wnt pathways. Fetal liver cells derived from low-density-lipoprotein receptor-related protein 6-deficient mice (LRP6(-/-)), generated dramatically reduced numbers of MKs in culture of lower ploidy (2N and 4N) than wild-type controls, implicating LRP6-dependent Wnt signaling in MK proliferation and maturation. Finally, in wild-type mature murine fetal liver-derived MKs, Wnt3a potently induced proplatelet formation, an effect that could be completely abrogated by DKK1. These data identify novel extrinsic regulators of proplatelet formation, and reveal a profound role for Wnt signaling in platelet production.


Subject(s)
Megakaryocytes/cytology , Thrombopoiesis/physiology , Wnt Signaling Pathway/physiology , Animals , Blood Platelets/cytology , Cell Line , Cells, Cultured/drug effects , Humans , Intercellular Signaling Peptides and Proteins/pharmacology , Liver/embryology , Low Density Lipoprotein Receptor-Related Protein-6/deficiency , Low Density Lipoprotein Receptor-Related Protein-6/genetics , Megakaryocytes/drug effects , Megakaryocytes/metabolism , Mice , Mice, Knockout , Recombinant Proteins/pharmacology , Thrombopoiesis/genetics , Wnt Proteins/pharmacology , Wnt3A Protein/pharmacology , beta Catenin/biosynthesis , beta Catenin/genetics
7.
Blood ; 116(22): 4646-56, 2010 Nov 25.
Article in English | MEDLINE | ID: mdl-20833976

ABSTRACT

Within the healthy population, there is substantial, heritable, and interindividual variability in the platelet response. We explored whether a proportion of this variability could be accounted for by interindividual variation in gene expression. Through a correlative analysis of genome-wide platelet RNA expression data from 37 subjects representing the normal range of platelet responsiveness within a cohort of 500 subjects, we identified 63 genes in which transcript levels correlated with variation in the platelet response to adenosine diphosphate and/or the collagen-mimetic peptide, cross-linked collagen-related peptide. Many of these encode proteins with no reported function in platelets. An association study of 6 of the 63 genes in 4235 cases and 6379 controls showed a putative association with myocardial infarction for COMMD7 (COMM domain-containing protein 7) and a major deviation from the null hypo thesis for LRRFIP1 [leucine-rich repeat (in FLII) interacting protein 1]. Morpholino-based silencing in Danio rerio identified a modest role for commd7 and a significant effect for lrrfip1 as positive regulators of thrombus formation. Proteomic analysis of human platelet LRRFIP1-interacting proteins indicated that LRRFIP1 functions as a component of the platelet cytoskeleton, where it interacts with the actin-remodeling proteins Flightless-1 and Drebrin. Taken together, these data reveal novel proteins regulating the platelet response.


Subject(s)
Blood Platelets/metabolism , Gene Expression Profiling , RNA-Binding Proteins/metabolism , Animals , Gene Silencing , Genotype , Humans , Platelet Activation , Proteome/metabolism , RNA-Binding Proteins/genetics , Repressor Proteins/genetics , Repressor Proteins/metabolism , Thrombosis , Zebrafish , Zebrafish Proteins/genetics , Zebrafish Proteins/metabolism
8.
Nat Genet ; 41(11): 1182-90, 2009 Nov.
Article in English | MEDLINE | ID: mdl-19820697

ABSTRACT

The number and volume of cells in the blood affect a wide range of disorders including cancer and cardiovascular, metabolic, infectious and immune conditions. We consider here the genetic variation in eight clinically relevant hematological parameters, including hemoglobin levels, red and white blood cell counts and platelet counts and volume. We describe common variants within 22 genetic loci reproducibly associated with these hematological parameters in 13,943 samples from six European population-based studies, including 6 associated with red blood cell parameters, 15 associated with platelet parameters and 1 associated with total white blood cell count. We further identified a long-range haplotype at 12q24 associated with coronary artery disease and myocardial infarction in 9,479 cases and 10,527 controls. We show that this haplotype demonstrates extensive disease pleiotropy, as it contains known risk loci for type 1 diabetes, hypertension and celiac disease and has been spread by a selective sweep specific to European and geographically nearby populations.


Subject(s)
Blood Cells , Genome, Human , Genome-Wide Association Study , Blood Cell Count , Blood Cells/cytology , Chromosomes, Human, Pair 12 , Coronary Artery Disease/genetics , Genetic Markers , Humans , Polymorphism, Single Nucleotide , Selection, Genetic
9.
Blood ; 114(7): 1405-16, 2009 Aug 13.
Article in English | MEDLINE | ID: mdl-19429868

ABSTRACT

Platelet response to activation varies widely between individuals but shows interindividual consistency and strong heritability. The genetic basis of this variation has not been properly explored. We therefore systematically measured the effect on function of sequence variation in 97 candidate genes in the collagen and adenosine-diphosphate (ADP) signaling pathways. Resequencing of the genes in 48 European DNA samples nearly doubled the number of known single nucleotide polymorphisms (SNPs) and informed the selection of 1327 SNPs for genotyping in 500 healthy Northern European subjects with known platelet responses to collagen-related peptide (CRP-XL) and ADP. This identified 17 novel associations with platelet function (P < .005) accounting for approximately 46% of the variation in response. Further investigations with platelets of known genotype explored the mechanisms behind some of the associations. SNPs in PEAR1 associated with increased platelet response to CRP-XL and increased PEAR1 protein expression after platelet degranulation. The minor allele of a 3' untranslated region (UTR) SNP (rs2769668) in VAV3 was associated with higher protein expression (P = .03) and increased P-selectin exposure after ADP activation (P = .004). Furthermore the minor allele of the intronic SNP rs17786144 in ITPR1 modified Ca(2+) levels after activation with ADP (P < .004). These data provide novel insights into key hubs within platelet signaling networks.


Subject(s)
Blood Platelets/physiology , Cell Degranulation/genetics , Gene Expression Regulation/physiology , Platelet Activation/genetics , Quantitative Trait Loci/physiology , Signal Transduction/genetics , 3' Untranslated Regions/genetics , 3' Untranslated Regions/metabolism , Adenosine Diphosphate/genetics , Adenosine Diphosphate/metabolism , Alleles , Blood Platelets/cytology , Collagen/genetics , Collagen/metabolism , Europe , Female , Genomics , Genotype , Humans , Inositol 1,4,5-Trisphosphate Receptors/biosynthesis , Inositol 1,4,5-Trisphosphate Receptors/genetics , Male , P-Selectin/genetics , P-Selectin/metabolism , Polymorphism, Single Nucleotide , Receptors, Cell Surface/biosynthesis , Receptors, Cell Surface/genetics , White People
10.
Blood ; 113(16): 3831-7, 2009 Apr 16.
Article in English | MEDLINE | ID: mdl-19221038

ABSTRACT

Mean platelet volume (MPV) and platelet count (PLT) are highly heritable and tightly regulated traits. We performed a genome-wide association study for MPV and identified one SNP, rs342293, as having highly significant and reproducible association with MPV (per-G allele effect 0.016 +/- 0.001 log fL; P < 1.08 x 10(-24)) and PLT (per-G effect -4.55 +/- 0.80 10(9)/L; P < 7.19 x 10(-8)) in 8586 healthy subjects. Whole-genome expression analysis in the 1-MB region showed a significant association with platelet transcript levels for PIK3CG (n = 35; P = .047). The G allele at rs342293 was also associated with decreased binding of annexin V to platelets activated with collagen-related peptide (n = 84; P = .003). The region 7q22.3 identifies the first QTL influencing platelet volume, counts, and function in healthy subjects. Notably, the association signal maps to a chromosome region implicated in myeloid malignancies, indicating this site as an important regulatory site for hematopoiesis. The identification of loci regulating MPV by this and other studies will increase our insight in the processes of megakaryopoiesis and proplatelet formation, and it may aid the identification of genes that are somatically mutated in essential thrombocytosis.


Subject(s)
Blood Platelets , Chromosomes, Human, Pair 7/genetics , Genome, Human/genetics , Polymorphism, Single Nucleotide , Quantitative Trait Loci/genetics , Thrombopoiesis/genetics , Adult , Aged , Chromosome Mapping , Cohort Studies , Female , Gene Expression Regulation/genetics , Hematologic Neoplasms/genetics , Humans , Male , Middle Aged , Platelet Count , Thrombocythemia, Essential/genetics
11.
Platelets ; 19(4): 258-67, 2008 Jun.
Article in English | MEDLINE | ID: mdl-18569861

ABSTRACT

Platelet Glycoprotein VI (GPVI) is the activatory collagen signalling receptor that transmits an outside-in signal via the FcR gamma-chain. In Caucasians two GP6 haplotypes have been identified which encode GPVI isoforms that differ by five amino-acids. The minor haplotype is associated with a modest but statistically significant reduction in GPVI abundance and reduced downstream signalling events. As GPVI is also expressed on megakaryocytes, different GPVI isoforms may imprint on the platelet transcriptome. We investigated the association of GP6 haplotype with transcription by comparing the transcriptomes of platelets from individuals homozygous for the major ('a') and minor ('b') haplotypes to identify differentially expressed (DE) transcripts. Platelet RNA was isolated from apheresis concentrates from 16 'aa' donors and eight 'bb' donors. mRNA was amplified using a template-switching PCR based protocol and fluorescently labelled. Samples were randomly paired both within and between haplotypes and compared on a cDNA microarray. No consistently DE transcripts were identified within the 'aa' haplotype but 52 significantly DE transcripts were observed between haplotypes. Generally the fold differences were low (two to four-fold) but were confirmed by qRT-PCR for selected transcripts (TUBB1, P = 0.0004; VWF, P = 0.0126). The results of this study indicate that there are subtle differences between the platelet transcriptomes of individuals who differ by GP6 haplotype. The identification of DE genes may identify critical pathways and nodes not previously known to be involved in platelet development and function.


Subject(s)
Blood Platelets/chemistry , Gene Expression Profiling , Genetic Variation , Haplotypes , Platelet Membrane Glycoproteins/genetics , RNA, Messenger/analysis , Humans , Megakaryocytes
12.
Transfusion ; 48(4): 673-80, 2008 Apr.
Article in English | MEDLINE | ID: mdl-18194381

ABSTRACT

BACKGROUND: Process-induced platelet (PLT) activation occurs with all production methods, including apheresis. Recent studies have highlighted the range and consistence of interindividual variation in the PLT response, but little is known about the contribution of a donors' inherent PLT responsiveness to the activation state of the apheresis PLTs or the effect of frequent apheresis on donors' PLTs. STUDY DESIGN AND METHODS: The relationship between the donors' PLT response on the apheresis PLTs was studied in 47 individuals selected as having PLTs with inherently low, intermediate, or high responsiveness. Whole-blood flow cytometry was used to measure PLT activation (levels of bound fibrinogen) before donation and in the apheresis PLTs. The effects of regular apheresis on the activation status of donors' PLTs were studied by comparing the in vivo activation status of PLTs from apheresis (n = 349) and whole-blood donors (n = 157), before donation. The effect of apheresis per se on PLT activation was measured in 10 apheresis donors before and after donation. RESULTS: The level of PLT activation in the apheresis packs was generally higher than in the donor, and the most activated PLTs were from high-responder donors. There was no significant difference in PLT activation before donation between the apheresis and whole-blood donors (p = 0.697), and there was no consistent evidence of activation in the donors immediately after apheresis. CONCLUSION: The most activated apheresis PLTs were obtained from donors with more responsive PLTs. Regular apheresis, however, does not lead to PLT activation in the donors.


Subject(s)
Blood Component Removal , Blood Platelets/physiology , Platelet Activation/physiology , Adult , Blood Platelets/cytology , Female , Flow Cytometry , Humans , Male , Middle Aged
13.
Comput Biol Chem ; 31(3): 178-85, 2007 Jun.
Article in English | MEDLINE | ID: mdl-17499550

ABSTRACT

Our ability to detect differentially expressed genes in a microarray experiment can be hampered when the number of biological samples of interest is limited. In this situation, we propose the use of information from self-self hybridizations to acuminate our inference of differential expression. A unified modelling strategy is developed to allow better estimation of the error variance. This principle is similar to the use of a pooled variance estimate in the two-sample t-test. The results from real dataset examples suggest that we can detect more genes that are differentially expressed in the combined models. Our simulation study provides evidence that this method increases sensitivity compared to using the information from comparative hybridizations alone, given the same control for false discovery rate. The largest increase in sensitivity occurs when the amount of information in the comparative hybridization is limited.


Subject(s)
Computational Biology/methods , Gene Expression Profiling/methods , Oligonucleotide Array Sequence Analysis/methods , Algorithms , Blood Platelets/metabolism , Computer Simulation , DNA, Complementary/genetics , Erythroblasts/metabolism , Genotype , Humans , Linear Models , Megakaryocytes/metabolism , Nucleic Acid Hybridization/methods , Platelet Membrane Glycoproteins/genetics
14.
Blood ; 109(8): 3260-9, 2007 Apr 15.
Article in English | MEDLINE | ID: mdl-17192395

ABSTRACT

To identify previously unknown platelet receptors we compared the transcriptomes of in vitro differentiated megakaryocytes (MKs) and erythroblasts (EBs). RNA was obtained from purified, biologically paired MK and EB cultures and compared using cDNA microarrays. Bioinformatical analysis of MK-up-regulated genes identified 151 transcripts encoding transmembrane domain-containing proteins. Although many of these were known platelet genes, a number of previously unidentified or poorly characterized transcripts were also detected. Many of these transcripts, including G6b, G6f, LRRC32, LAT2, and the G protein-coupled receptor SUCNR1, encode proteins with structural features or functions that suggest they may be involved in the modulation of platelet function. Immunoblotting on platelets confirmed the presence of the encoded proteins, and flow cytometric analysis confirmed the expression of G6b, G6f, and LRRC32 on the surface of platelets. Through comparative analysis of expression in platelets and other blood cells we demonstrated that G6b, G6f, and LRRC32 are restricted to the platelet lineage, whereas LAT2 and SUCNR1 were also detected in other blood cells. The identification of the succinate receptor SUCNR1 in platelets is of particular interest, because physiologically relevant concentrations of succinate were shown to potentiate the effect of low doses of a variety of platelet agonists.


Subject(s)
Cell Differentiation/physiology , Erythroblasts/metabolism , Gene Expression Regulation/physiology , Megakaryocytes/metabolism , Platelet Membrane Glycoproteins/biosynthesis , Erythroblasts/cytology , Gene Expression Profiling , Humans , Megakaryocytes/cytology , Oligonucleotide Array Sequence Analysis , Platelet Membrane Glycoproteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...