Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Chemosphere ; 355: 141758, 2024 May.
Article in English | MEDLINE | ID: mdl-38518922

ABSTRACT

The unsaturated behavior of permeable reactive barriers (PRB) is a critical component in predicting the removal efficiency through the adsorption of contaminants. This study investigates the framework to estimate the soil water characteristic curve (SWCC) and hydraulic conductivity function (HCF) for iron oxide-coated sand (IOCS) and zeolite, which are common materials used in PRBs. A multistep outflow (MSO) experiment was performed and the results of the MSO experiment were used to optimize associated parameters in Kosugi's SWCC and HCF. In addition, three scenarios of optimization analysis were investigated to evaluate the best-fitting model for estimating SWCC and HCF. The low root mean square error (RMSE) of fitted parameters indicates the Kosugi model well described the observed suction profiles in MSO experiments. In addition, the lowest RMSE and coefficient of variation suggested the inclusion of the additional parameter ß provided the best estimation of the three materials (clean sand, IOCS, and zeolite). The physically reasonable estimation of SWCC and HCF of the three materials from the optimized parameters suggests the proposed framework is a reasonable model for the unsaturated behavior of PRBs.


Subject(s)
Ferric Compounds , Water Pollutants, Chemical , Zeolites , Water , Soil , Sand , Water Pollutants, Chemical/analysis
2.
Waste Manag ; 135: 122-129, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34492605

ABSTRACT

Recently, sustainable energy portfolios have added biomass combustion and coal/biomass co-combustion as alternative fuel sources for generation of electricity. Fly ashes that result from combustion of biomass or its co-combustion with coal contain relatively high contents of unburned carbon, while increasingly stringent air quality regulations have also increased the residual carbon content in fly ash produced by coal combustion alone. While previous studies documented the mechanical and chemical behavior of fly ash relatively well, the thermal characteristics of those fly ashes have not been well studied. Therefore, this study evaluated the thermal conductivity of fly ashes with varied carbon and initial biomass contents to quantify the impact of unburned carbon particles and biomass-fired fly ash on thermal conductivity. Observed results demonstrated that the thermal conductivity of fly ashes almost linearly decreased as biomass content increased while the variation of thermal conductivity of fly ashes caused by unburned carbon content was relatively low. In addition, the thermal conductivity of fly ashes was lower than that of natural soils mainly because of the microporous structures of fly ash particles. The trend of thermal conductivity of fly ashes as a function of dry density was consistent with that of natural soils, due to the similar mineralogy of fly ash with that of natural soils. The developed stepwise regression model indicated that the porosity and the specific gravity was the most critical factor in predicting the thermal conductivity of fly ash.


Subject(s)
Carbon , Coal Ash , Biomass , Coal/analysis , Coal Ash/analysis , Particulate Matter/analysis , Thermal Conductivity
3.
J Hazard Mater ; 373: 476-482, 2019 07 05.
Article in English | MEDLINE | ID: mdl-30947037

ABSTRACT

Cotransport of heavy metals, Pb, Cu and Zn (multi-metal system), and transport of those metals (single-metal system) were investigated by performing laboratory soil column experiment under the presence of kaolinite colloids. Preequilibrated kaolinite colloids with heavy metal solution was injected to the column until 10 pore volumes under two different flow rates and three different concentration of kaolinite colloids. Heavy metal concentration in effluent showed that the mobility of Pb was facilitated as kaolinite colloids concentration (Cc0) increases under high flow rate while the mobility of Pb and Cu were retarded as Cc0 increases under low flow rate. In addition, optimized first order rate coefficient related to sand-heavy metal interaction and estimated bed efficiency of experimental breakthrough curves demonstrated that the presence of mobile kaolinite colloids delayed the adsorption of heavy metals to the sand and facilitated the transport. Colloid associated contaminant transport model used in this study was found to be well fitted to the experimental breakthrough curves with the parameters associated with observed heavy metal transport without kaolinite colloids and adsorption/desorption between the heavy metals and the mobile kaolinite colloids.

4.
Environ Sci Technol ; 52(5): 2735-2741, 2018 03 06.
Article in English | MEDLINE | ID: mdl-29400458

ABSTRACT

Predicting the transport of contaminants in porous media is crucial to protecting public health and remediating contaminated soil and groundwater. However, the prediction of contaminant transport is challenging due to the presence of mobile and immobile colloids. The work performed in this experimental investigation quantified the role of immobile clay colloids on metal transport through sets of column breakthrough experiments under varying solution chemistry, clay content, and flow rate. Georgia kaolinite was chosen as the colloidal material, and Pb(II) was chosen as the dissolved contaminant. The silica sand used as the bed material was sized to ensure that the kaolinite colloids remained stationary during the column experiments. Results indicated that retardation of the Pb(II) breakthrough curve was observed as ionic strength decreased and kaolinite content and pH increased, while no significant variation of Pb(II) breakthrough was observed at any kaolinite content as flow rate decreased. This work demonstrated that, in the presence of immobile kaolinite colloids, Pb(II) breakthrough curves strongly depended on the pH and ionic strength, which controlled the charge on the surface functional groups and the surface availability of metal adsorption sites on immobile kaolinite colloids. In addition, the evaluation of unknown first-order coefficients in the continuum governing equation, bed efficiency, and Pb(II) saturation provided a quantitative description of Pb(II) breakthrough curves.


Subject(s)
Kaolin , Metals, Heavy , Adsorption , Colloids , Georgia
5.
Environ Sci Technol ; 47(6): 2769-76, 2013 Mar 19.
Article in English | MEDLINE | ID: mdl-23413980

ABSTRACT

Organoclays are highly sorptive engineered materials that can be used as amendments in barrier systems or geosynthetic liners. The performance of confining and isolating the nonpolar organic contaminants by those barrier/lining systems is essentially controlled by the process of organic contaminant mass transport in nanopores of organoclays. In this article, we use molecular dynamics (MD) simulations to study the sorption and diffusion of organic sorbates in interlayers of sodium montmorillonite and hexadecyltrimethylammonium (HDTMA(+))-modified montmorillonite clays. Simulated system consisted of the clay framework, interlayer organic cation, water, and organic sorbate. Their interactions were addressed by the combined force field of ClayFF, constant-valence force field, and SPC water model. Simulation results indicated that in HDTMA coated clay nanopores, diffusion of nonpolar species benzene was slowed because they were subjected to influence of both the pore wall and the HDTMA surfactant. This suggested the nonpolar organic compound diffusion in organophilic clays can be affected by molecular size of diffusive species, clay pore size, and organic surfactant loading. Additionally, a model that connected the diffusion rate of organic compounds in the bulk organoclay matrix with macropores and nanopores was established. The impact of intercalated organic cations on the diffusion dominated mass transport of organic compounds yielded insight into the prediction of the apparent diffusion behavior of organic compounds in organic-modified clays.


Subject(s)
Aluminum Silicates/chemistry , Bentonite/chemistry , Molecular Dynamics Simulation , Nanopores/ultrastructure , Quaternary Ammonium Compounds/chemistry , Adsorption , Clay , Diffusion
6.
Langmuir ; 28(47): 16393-400, 2012 Nov 27.
Article in English | MEDLINE | ID: mdl-23126472

ABSTRACT

This study uses molecular dynamics (MD) modeling to examine the interlayer microstructures of montmorillonite intercalated with single chain QACs. Three types of QACs-tetramethylammonium (TMA), decyltrimethylammonium (DTMA), and hexadecyltrimethylammonium (HDTMA)-were selected to synthesize the organoclay complex, and the surfactant arrangement was analyzed quantitatively in systems in the absence of water. A series of arrangement patterns of interlayer QAC surfactant were observed, including lateral monolayers, lateral bilayers, pseudotrilayers, and paraffin monolayers, in agreement with previous experimental results. The effects of increasing one carbon chain length and amount of loading of QAC on the resultant QAC arrangement are summarized, yielding a model that provides insight into the prediction of synthesized QAC-clay microstructure and engineering behavior in practice.

7.
J Environ Manage ; 113: 128-36, 2012 Dec 30.
Article in English | MEDLINE | ID: mdl-23017584

ABSTRACT

A laboratory-scale study was conducted to assess the feasibility of the production of fired bricks from sediments dredged from the Savannah Harbor (Savannah, GA, USA). The dredged sediment was used as the sole raw material, or as a 50% replacement for natural brick-making clay. Sediment bricks were prepared using the stiff mud extrusion process from raw mixes consisted of 100% dredged sediment, or 50% dredged sediment and 50% brick clay. The bricks were fired at temperatures between 900 and 1000 °C. Physical and mechanical properties of the dredged sediment brick were found to generally comply with ASTM criteria for building brick. Water absorption of the dredged sediment bricks was in compliance with the criteria for brick graded for severe (SW) or moderate (MW) weathering. Compressive strength of 100% dredged sediment bricks ranged from 8.3 to 11.7 MPa; the bricks sintered at 1000 °C met the requirements for negligible weathering (NW) building brick. Mixing the dredged sediment with natural clay resulted in an increase of the compressive strength. The compressive strength of the sediment-clay bricks fired at 1000 °C was 29.4 MPa, thus meeting the ASTM requirements for the SW grade building brick. Results of this study demonstrate that production of fired bricks is a promising and achievable productive reuse alternative for Savannah Harbor dredged sediments.


Subject(s)
Construction Materials , Geologic Sediments , Aluminum Silicates , Clay , Compressive Strength , Conservation of Natural Resources , Georgia , Rivers
8.
Environ Sci Technol ; 46(7): 3999-4007, 2012 Apr 03.
Article in English | MEDLINE | ID: mdl-22364194

ABSTRACT

Organoclays synthesized from single chain quaternary ammonium cations (QAC) ((CH(3))(3)NR(+)) exhibit different mechanisms for the sorption of nonpolar organic compounds as the length of the carbon chain is increased. The interaction between a nonpolar sorbate and an organoclay intercalated with small QACs has been demonstrated to be surface adsorption, while partitioning is the dominant mechanism in clays intercalated with long chain surfactants. This study presents the results of a molecular dynamics (MD) simulation performed to examine the sorption mechanisms of benzene in the interlayer of three organoclays with chain lengths ranging from 1 to 16 carbons: tetramethylammonium (TMA) clay; decyltrimethylammonium (DTMA) clay; and hexadecyltrimethylammonium (HDTMA) clay. The basis of the overall simulation was a combined force field of ClayFF and CVFF. In the simulations, organic cations were intercalated and benzene molecules were introduced to the interlayer, followed by whole system NPT and NVT time integration. Trajectories of all the species were recorded after the system reached equilibrium and subsequently analyzed. Simulation results confirmed that the arrangement of the surfactants controlled the sorption mechanism of organoclays. Benzene molecules were observed to interact directly with the clay surface in the presence of TMA cations, but tended to interact with the aliphatic chain of the HDTMA cation in the interlayer. The simulation provided insight into the nature of the adsorption/partitioning mechanisms in organoclays, and explained experimental observations of decreased versus increased uptake capacities as a function of increasing total organic carbon (TOC) for TMA clay and HDTMA clay, respectively. The transition of sorption mechanisms was also quantified with simulation of DTMA clay, with a chain length between that of TMA and HDTMA. Furthermore, this study suggested that at the molecular level, the controlling factor for the ultimate sorption capacity is available surface sites in the case of TMA clay, and density of aliphatic chains within the interlayer space for HDTMA clay.


Subject(s)
Bentonite/chemistry , Cetrimonium Compounds/chemistry , Molecular Dynamics Simulation , Quaternary Ammonium Compounds/chemistry , Adsorption , Aluminum Silicates/chemistry , Benzene/chemistry , Cations , Clay , Diffusion , Surface-Active Agents/chemistry , Thermodynamics
9.
J Colloid Interface Sci ; 313(2): 405-13, 2007 Sep 15.
Article in English | MEDLINE | ID: mdl-17511998

ABSTRACT

This work describes the role of quaternary alkylammonium amendment length on sorption mechanisms of modified bentonites for four nonionic organic compounds; benzene, carbon tetrachloride, TCE, and 1,2-DCB. Tetramethyl to tetrabutyl alkyl amendments were studied and an important mechanistic shift occurred at the propyl chain length for all four solutes studied. Three- and four-carbon-chain functional groups on the ammonium cation resulted in a linear, rather than a curvilinear isotherm. The uptake on tetrapropyl and tetrabutylammonium clays was noncompetitive in binary systems and showed negligible sensitivity to temperature variations, indicating the linear isotherms describe a partitioning uptake mechanism for these organoclays. The adsorptive organoclays (tetramethyl and tetraethylammonium clays) were fit with the Dubinin-Radushkevich equation to investigate the application of the Polanyi-Manes potential theory to organoclay adsorption. It was found that TCE and carbon tetrachloride, with similar physical and chemical characteristics, behaved according to the Polanyi-Manes theory. Benzene showed an anomalously high adsorption volume limit, possibly due to dense packing in the adsorption space or chemisorption to the short chain alkyl groups.

10.
J Colloid Interface Sci ; 266(2): 251-8, 2003 Oct 15.
Article in English | MEDLINE | ID: mdl-14527447

ABSTRACT

Sorption of three nonionic organic solutes (benzene, trichloroethene, and 1,2-dichlorobenzene) to hexadecyltrimethylammonium bentonite (HDTMA bentonite) and benzyltriethylammonium bentonite (BTEA bentonite) was measured as a function of total organic-carbon content at quaternary ammonium cation loadings ranging from 30 to 100% of the clay's cation-exchange capacity. Sorption of all three solutes to HDTMA bentonite was linear and sorption of all three solutes by the HDTMA bentonite increased as the organic-carbon content of the clay increased. 1,2-Dichlorobenzene sorbed most strongly to HDTMA bentonite, followed by benzene and TCE. The stronger sorption of benzene to HDTMA bentonite compared to TCE was unexpected based on a partition mechanism of sorption and consideration of solute solubility. LogK(oc) values for all three solutes increased with organic-carbon content. This suggests that the increased organic-carbon content alone may not explain the observed increase in sorption capacity. Sorption of the three solutes to BTEA bentonite was nonlinear and solute sorption increased with decreasing organic-carbon content, with a peak in the magnitude of solute sorption occurring at an organic-carbon content corresponding to 50% of CEC. Below 50% of CEC, sorption of all three solutes to BTEA bentonite decreased with decreasing organic-carbon content. Surface area measurements indicate that the surface area of both organobentonites generally decreased with increasing organic-carbon content. Since nonionic organic solute sorption to BTEA bentonite occurs by adsorption, the reduced sorption is likely caused by the reduction in surface area corresponding to increased organic-cation loading.

11.
J Hazard Mater ; 96(1): 91-7, 2003 Jan 03.
Article in English | MEDLINE | ID: mdl-12475481

ABSTRACT

We investigate the use of organobentonites as liners for underground gasoline storage tanks to reduce the risk of subsurface contamination. A series of permeability measurements were conducted on two types of organobentonites: benzyltriethylammonium-bentonite (BTEA-bentonite) and hexadecyltrimethylammonium-bentonite (HDTMA-bentonite). Both water and commercial unleaded gasoline were used as the permeant liquids. Results of these measurements indicate that the intrinsic permeability of the organobentonite decreases by one to two orders of magnitude when the permeant liquid is changed from water to gasoline. Results of batch sorption measurements reveal that benzene sorption to both organobentonites from water is greater than benzene sorption to conventional bentonite. The magnitude of benzene sorption is related to the loading of the organic quaternary ammonium cation on the clay. As the HDTMA cation loading increases from 25% of cation exchange capacity (CEC) to 120% of CEC, benzene sorption increases. However, as the BTEA cation loading increases from 40 to 120% of CEC, benzene sorption decreases. Collectively, these results suggest that organobentonites can be used effectively to reduce hydrocarbon migration rates beneath leaking underground gasoline storage tanks, and that the optimal organic cation loading with respect to pollutant sorption may be less than 50% of cation exchange capacity for some organobentonite-solute combinations.


Subject(s)
Bentonite/chemistry , Gasoline , Hydrocarbons/chemistry , Water Pollution/prevention & control , Adsorption , Permeability
SELECTION OF CITATIONS
SEARCH DETAIL
...