Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Immunology ; 167(1): 105-121, 2022 09.
Article in English | MEDLINE | ID: mdl-35751391

ABSTRACT

Cells must control genes that are induced by virus infection to mitigate deleterious consequences of inflammation. We investigated the mechanisms whereby Keap1 moderates the transcription of genes that are induced by Sendai virus infection in mouse embryo fibroblasts (MEFs). Keap1-/- deletions increased the transcription of virus induced genes independently of Nrf2. Keap1 moderated early virus induced gene transcription. Virus infection induced Keap1 to bind Ifnb1, Tnf and Il6, and reduced Keap1 binding at Cdkn1a and Ccng1. Virus infection induced G9a-GLP and NFκB p50 recruitment, and H3K9me2 deposition. Keap1-/- deletions eliminated G9a-GLP and NFκB p50 recruitment, and H3K9me2 deposition, but they did not affect NFκB p65, IRF3 or cJun recruitment. G9a-GLP inhibitors (BIX01294, MS012, BRD4770) enhanced virus induced gene transcription in MEFs with intact Keap1, but not in MEFs with Keap1-/- deletions. G9a-GLP inhibitors augmented Keap1 binding to virus induced genes in infected MEFs, and to cell cycle genes in uninfected MEFs. G9a-GLP inhibitors augmented NFκB subunit recruitment in MEFs with intact Keap1. G9a-GLP inhibitors stabilized Keap1 retention in permeabilized MEFs. G9a-GLP lysine methyltransferase activity was required for Keap1 to moderate transcription, and it moderated Keap1 binding to chromatin. The interdependent effects of Keap1 and G9a-GLP on the recruitment of each other and on the moderation of virus induced gene transcription constitute a feedback circuit. Keap1 and the electrophile tBHQ reduced virus induced gene transcription through different mechanisms, and they regulated the recruitment of different NFκB subunits. Characterization of the mechanisms whereby Keap1, G9a-GLP and NFκB p50 moderate virus induced gene transcription can facilitate the development of immunomodulatory agents.


Subject(s)
Histone-Lysine N-Methyltransferase , Kelch-Like ECH-Associated Protein 1/metabolism , NF-E2-Related Factor 2 , Respirovirus Infections/metabolism , Animals , Chromatin , Histone-Lysine N-Methyltransferase/genetics , Histone-Lysine N-Methyltransferase/metabolism , Kelch-Like ECH-Associated Protein 1/genetics , Mice , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism , NF-kappa B/metabolism , Sendai virus/physiology
2.
Mil Med ; 187(3-4): e394-e403, 2022 03 28.
Article in English | MEDLINE | ID: mdl-33547793

ABSTRACT

INTRODUCTION: Influenza is a globally occurring viral respiratory infection that can lead to hospitalizations and death. An influenza outbreak can interfere with combat readiness in a military setting, as the infection can incapacitate soldiers. Vaccination remains the most effective tool to prevent and mitigate seasonal influenza. Although influenza vaccinations for U.S. Army soldiers can be monitored through military health systems, those systems cannot capture DoD civilians and Army dependents who may not use military health services. This study aims to gauge flu vaccine uptake and perceptions in U.S. Army civilians and dependents. MATERIALS AND METHODS: An online survey was e-mailed to civilian and dependent enrollees of Landstuhl Regional Medical Center. The survey contained 24 questions pertaining to demographics, vaccine history, history of the flu, and beliefs toward vaccines. Chi-square tests, t-tests, and logistic regressions were performed to investigate the association between demographic, behavior, and belief factors with vaccine uptake. Free-text answers were coded and categorized by themes. RESULTS: Over 70% of respondents were vaccinated for the flu. There were differences between vaccinated and unvaccinated respondents regarding their perceptions of barriers to vaccination, benefits of the flu vaccine, severity of flu symptoms, and personal risk of getting ill with the flu. After controlling for confounders, flu vaccination in the previous season and healthcare worker status were associated with increased vaccine uptake, while perceived barriers to influenza vaccination were associated with decreased vaccine uptake. CONCLUSIONS: Flu vaccine uptake may be increased by increasing access to vaccination, promoting vaccination and addressing concerns at the provider level, and engaging positively framed public messaging. Increasing flu vaccine uptake is of particular importance as the flu season approaches during the COVID-19 (Coronavirus disease 2019) pandemic.


Subject(s)
COVID-19 , Influenza Vaccines , Influenza, Human , Military Personnel , Humans , Influenza Vaccines/therapeutic use , Influenza, Human/epidemiology , Influenza, Human/prevention & control , Seasons , Surveys and Questionnaires , Vaccination
3.
J Immunol ; 207(5): 1437-1447, 2021 09 01.
Article in English | MEDLINE | ID: mdl-34400522

ABSTRACT

Proinflammatory cytokine gene transcription must be moderated to avoid the pathological consequences of excess cytokine production. The relationships between virus infection and the mechanisms that moderate cytokine transcription are incompletely understood. We investigated the influence of Keap1 on cytokine gene induction by Sendai virus infection in mouse embryo fibroblasts. Virus infection induced Keap1 binding to the Ifnb1, Tnf, and Il6 genes. Keap1 moderated viral induction of their transcription by mechanisms that did not require Nrf2. Keap1 was required for NF-κB p50 recruitment, but not for NF-κB p65 or IRF3 recruitment, to these genes. Keap1 formed complexes with NF-κB p50 and NF-κB p65, which were visualized using bimolecular fluorescence complementation analysis. These bimolecular fluorescence complementation complexes bound chromosomes in live cells, suggesting that Keap1 could bind chromatin in association with NF-κB proteins. Keap1 was required for viral induction of G9a-GLP lysine methyltransferase binding and H3K9me2 modification at cytokine genes. G9a-GLP inhibitors counteracted transcription repression by Keap1 and enhanced Keap1 and NF-κB recruitment to cytokine genes. The interrelationships among Keap1, NF-κB, and G9a-GLP recruitment, activities, and transcriptional effects suggest that they form a feedback circuit, which moderates viral induction of cytokine transcription. Nrf2 counteracted Keap1 binding to cytokine genes and the recruitment of NF-κB p50 and G9a-GLP by Keap1. Whereas Keap1 has been reported to influence cytokine expression indirectly through its functions in the cytoplasm, these findings provide evidence that Keap1 regulates cytokine transcription directly in the nucleus. Keap1 binds to cytokines genes upon virus infection and moderates their induction by recruiting NF-κB p50 and G9a-GLP.


Subject(s)
NF-kappa B , Virus Diseases , Animals , Cytokines , Kelch-Like ECH-Associated Protein 1/genetics , Mice , NF-E2-Related Factor 2/genetics , NF-kappa B/metabolism , NF-kappa B p50 Subunit/metabolism , Virus Diseases/genetics
4.
Br J Pharmacol ; 174(19): 3315-3332, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28710789

ABSTRACT

BACKGROUND AND PURPOSE: To further the development of new agents for the treatment of adrenocortical carcinoma (ACC), we characterized the molecular and cellular mechanisms of cytotoxicity by the adrenalytic compound ATR-101 (PD132301-02). EXPERIMENTAL APPROACH: We compared the effects of ATR-101, PD129337, and ABC transporter inhibitors on cholesterol accumulation and efflux, on cortisol secretion, on ATP levels, and on caspase activation in ACC-derived cell lines. We examined the effects of these compounds in combination with methyl-ß-cyclodextrin or exogenous cholesterol to determine the roles of altered cholesterol levels in the effects of these compounds. KEY RESULTS: ATR-101 caused cholesterol accumulation, ATP depletion, and caspase activation within 30 minutes after addition to ACC-derived cells, whereas PD129337 did not. Suppression of cholesterol accumulation by methyl-ß-cyclodextrin or exogenous cholesterol, prevented ATP depletion and caspase activation by ATR-101. ATR-101 blocked cholesterol efflux and cortisol secretion, suggesting that it inhibited ABCA1, ABCG1, and MDR1 transporters. Combinations of ABCA1, ABCG1, and MDR1 inhibitors were also cytotoxic. Combinations of ATR-101 with inhibitors of ABCG1, MDR1, or mitochondrial functions had increased cytotoxicity. Inhibitors of steroidogenesis reduced ATP depletion by ATR-101, whereas U18666A enhanced cholesterol accumulation and ATP depletion together with ATR-101. ATR-101 repressed ABCA1, ABCG1, and IDOL transcription by mechanisms that were distinct from the mechanisms that caused cholesterol accumulation. CONCLUSIONS AND IMPLICATIONS: Inhibition of multiple ABC transporters and the consequent accumulation of cholesterol mediated the cytotoxicity of ATR-101. Compounds that replicate these effects in tumours are likely to be useful in the treatment of ACC.


Subject(s)
ATP-Binding Cassette Transporters/metabolism , Adrenocortical Carcinoma/metabolism , Antineoplastic Agents/pharmacology , Cholesterol/metabolism , Hydrocortisone/metabolism , Phenylurea Compounds/pharmacology , Adenosine Triphosphate/metabolism , Caspase 3/metabolism , Caspase 7/metabolism , Cell Line, Tumor , Humans
5.
J Biol Chem ; 287(38): 31833-44, 2012 Sep 14.
Article in English | MEDLINE | ID: mdl-22843696

ABSTRACT

ATF2-Jun, IRF3, and HMGI recognize a composite regulatory element within the interferon-ß enhancer (IFNb). Cooperative ATF2-Jun-IRF3 complex formation at IFNb has been proposed to require a fixed orientation of ATF2-Jun binding. Our results show that ATF2-Jun heterodimers bound IFNb in both orientations alone and in association with IRF3 and HMGI. Two sets of symmetrically located amino acid residues in ATF2 and Jun facilitated the interactions between heterodimers bound in opposite orientations and IRF3 at IFNb. IRF3 and HMGI bound IFNb in association with both orientations of ATF2-Jun heterodimers with the same cooperativity. ATF2-Jun heterodimers that bound IFNb in opposite orientations in vitro had different effects on interferon-ß gene transcription when they were co-expressed with IRF3 in cultured cells. These heterodimers had different transcriptional activities at different endogenous genes. Different regions of ATF2 and Jun mediated their orientation-dependent transcriptional activities at different genes. These studies revealed that cooperative DNA binding does not require a unique nucleoprotein complex configuration, and that transcription factor complexes that bind the same enhancer in different configurations can have different transcriptional activities.


Subject(s)
DNA/chemistry , Interferon-beta/chemistry , Transcription Factors/chemistry , Transcription, Genetic , Activating Transcription Factor 2/chemistry , Dimerization , Fluorescence Resonance Energy Transfer , Gene Expression Regulation , HMGA1a Protein/chemistry , Humans , Interferon Regulatory Factor-3/chemistry , JNK Mitogen-Activated Protein Kinases/chemistry , Nucleoproteins/chemistry , Oligonucleotides/chemistry , Protein Binding , Protein Conformation
6.
FEBS Lett ; 524(1-3): 73-8, 2002 Jul 31.
Article in English | MEDLINE | ID: mdl-12135744

ABSTRACT

A stop codon at position 322 was introduced to generate a truncated, C-terminal-deleted AT2 receptor. Expression studies in Xenopus oocytes showed that C-terminal-deleted AT2 had reduced affinity to [(125)I]angiotensin II (K(d)=1.7 nM) and enhanced binding of the AT2-specific peptidic ligand [(125)I]CGP42112A (K(d)=0.097 nM). AT2 activation by angiotensin II resulted in reduction of cGMP levels in oocytes and this reduction was further enhanced by C-terminal deletion, implying that the C-terminus may have a negative effect on the AT2-mediated cGMP reduction. Moreover, interaction of the AT2 with the ATP-binding domain of the human ErbB3 receptor in yeast two-hybrid assay was abolished by C-terminal deletion. In summary, the C-terminal cytoplasmic tail of AT2 modulates its ligand binding and signaling properties.


Subject(s)
Angiotensin II/metabolism , Receptors, Angiotensin/metabolism , Signal Transduction , Amino Acid Sequence , Animals , Base Sequence , Codon, Terminator , Cyclic GMP/metabolism , DNA Primers , Humans , Ligands , Molecular Sequence Data , Protein Binding , Receptors, Angiotensin/chemistry , Receptors, Angiotensin/genetics , Sequence Homology, Amino Acid , Xenopus
SELECTION OF CITATIONS
SEARCH DETAIL
...