Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Biol Macromol ; 118(Pt A): 1065-1072, 2018 Oct 15.
Article in English | MEDLINE | ID: mdl-29966669

ABSTRACT

The structure of potential bacteriophage receptors located on cell walls of Gram-negative bacteria deposited at Belarusian collection of microorganisms was investigated. Studies by 1D and 2D 1H and 13C NMR spectroscopy enabled to elucidate the structure of the O-specific polysaccharides (OPS) constituting lipopolysaccharide (LPS) of some Pseudomonas species. The capacity of bacteriophage to adsorb to LPS molecules was tested.


Subject(s)
Bacteriophages/metabolism , Lipopolysaccharides , Pseudomonas , Receptors, Virus , Lipopolysaccharides/chemistry , Lipopolysaccharides/metabolism , Pseudomonas/chemistry , Pseudomonas/metabolism , Pseudomonas/virology , Receptors, Virus/chemistry , Receptors, Virus/metabolism
2.
J Immunoassay Immunochem ; 36(4): 379-86, 2015.
Article in English | MEDLINE | ID: mdl-25273383

ABSTRACT

The exposure of Azospirillum brasilense carbohydrate epitopes was investigated by electro-optical analysis of bacterial cell suspensions. To study changes in the electro-optical (EO) properties of the suspensions, we used antibodies generated to the complete lipopolysaccharide of A. brasilense type strain Sp7 and also antibodies to the smooth and rough O polysaccharides of Sp7. After 18 hr of culture growth, the EO signal of the suspension treated with antibodies to smooth O polysaccharide was approximately 20% lower than that of the suspension treated with antibodies to complete lipopolysaccharide (control). After 72 hr of culture growth, the strongest EO signal was observed for the cells treated with antibodies to rough O polysaccharide (approximately 46% greater than the control), whereas for the cells treated with antibodies to smooth O polysaccharide, it was much lower (approximately 23% of the control). These data were confirmed by electron microscopy. The results of the study may have importance for the rapid evaluation of changes in lipopolysaccharide form in microbial biotechnology, when the antigenic composition of the bacterial surface requires close control.


Subject(s)
Antibodies, Bacterial/pharmacology , Azospirillum brasilense/immunology , Azospirillum brasilense/physiology , Epitopes/immunology , Lipopolysaccharides/immunology , Antigens, Bacterial/immunology , Azospirillum brasilense/ultrastructure , Electrophysiological Phenomena , Microscopy, Electron
3.
Microb Ecol ; 68(3): 495-503, 2014 Oct.
Article in English | MEDLINE | ID: mdl-24863127

ABSTRACT

The ability to reduce selenite (SeO(3)(2-)) ions with the formation of selenium nanoparticles was demonstrated in Azospirillum brasilense for the first time. The influence of selenite ions on the growth of A. brasilense Sp7 and Sp245, two widely studied wild-type strains, was investigated. Growth of cultures on both liquid and solid (2 % agar) media in the presence of SeO(3)(2-) was found to be accompanied by the appearance of the typical red colouration. By means of transmission electron microscopy (TEM), electron energy loss spectroscopy (EELS) and X-ray fluorescence analysis (XFA), intracellular accumulation of elementary selenium in the form of nanoparticles (50 to 400 nm in diameter) was demonstrated for both strains. The proposed mechanism of selenite-to-selenium (0) reduction could involve SeO(3)(2-) in the denitrification process, which has been well studied in azospirilla, rather than a selenite detoxification strategy. The results obtained point to the possibility of using Azospirillum strains as endophytic or rhizospheric bacteria to assist phytoremediation of, and cereal cultivation on, selenium-contaminated soils. The ability of A. brasilense to synthesise selenium nanoparticles may be of interest to nanobiotechnology for "green synthesis" of bioavailable amorphous red selenium nanostructures.


Subject(s)
Azospirillum brasilense/metabolism , Nanoparticles/chemistry , Selenious Acid/chemistry , Color , Culture Media , Oxidation-Reduction , Selenium/chemistry
4.
Microb Ecol ; 67(1): 155-60, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24276540

ABSTRACT

For the soil nitrogen-fixing bacterium Azospirillum brasilense, the ability to reduce [AuCl4](-) and to form gold nanoparticles (GNPs) has been demonstrated, with the appearance of a mauve tint of the culture. To validate the shapes and chemical nature of nanoparticles, transmission electron microscopy (TEM) and X-ray fluorescence analysis were used. For the widely studied agriculturally important wild-type strains A. brasilense Sp7 and Sp245, GNPs formed after 10 days of incubation of cell biomass with 0.25 mM [AuCl4](-) were shown (using TEM) to be mainly of spherical form (5 to 20 nm in diameter), with rare occasional triangles. In the course of cultivation with [AuCl4](-), after 5 days, a mauve tint was already visible for cells of strain Sp245.5, after 6 days for Sp245 and after 10 days for Sp7. Thus, for the mutant strain Sp245.5 (which has significant differences in the structure and composition of cell-surface polysaccharides as compared with Sp245), a more rapid formation of GNPs was observed. Moreover, their TEM images (also obtained after 10 days) showed different shapes: nano-sized spheres, triangles, hexagons and rods, as well as larger round-shaped flower-like nanoparticles about 100 nm in size. Since by the time of GNP formation in our experiments the cells were found to be already not viable, this confirms the dominating role of cell surface structure and chemical composition in shaping the GNPs formed in the course of [AuCl4](-) reduction to Au(0). This finding may be useful for understanding the natural biogeochemical mechanisms of gold reduction and formation of GNPs involving microorganisms. The data obtained may also help in developing protocols for environmentally friendly synthesis of nanoparticles and possible use of bacterial cells with modified surface structure and composition for their fabrication.


Subject(s)
Azospirillum brasilense/metabolism , Gold/metabolism , Nanoparticles , Microscopy, Electron, Transmission , Polysaccharides, Bacterial/chemistry , Spectrometry, X-Ray Emission
SELECTION OF CITATIONS
SEARCH DETAIL
...