Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Eng Sci Med ; 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38954379

ABSTRACT

Contrast-enhanced mammography is being increasingly implemented clinically, providing much improved contrast between tumour and background structures, particularly in dense breasts. Although CEM is similar to conventional mammography it differs via an additional exposure with high energy X-rays (≥ 40 kVp) and subsequent image subtraction. Because of its special operational aspects, the CEM aspect of a CEM unit needs to be uniquely characterised and evaluated. This study aims to verify the utility of a commercially available phantom set (BR3D model 020 and CESM model 022 phantoms (CIRS, Norfolk, Virginia, USA)) in performing key CEM performance tests (linearity of system response with iodine concentration and background subtraction) on two models of CEM units in a clinical setting. The tests were successfully performed, yielding results similar to previously published studies. Further, similarities and differences in the two systems from different vendors were highlighted, knowledge of which may potentially facilitate optimisation of the systems.

2.
Appl Radiat Isot ; 105: 20-25, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26226219

ABSTRACT

The proton beam energy of an isochronous 18MeV cyclotron was determined using a novel version of the stacked copper-foils technique. This simple method used stacked foils of natural copper forming 'thick' targets to produce Zn radioisotopes by the well-documented (p,x) monitor-reactions. Primary beam energy was calculated using the (65)Zn activity vs. depth profile in the target, with the results obtained using (62)Zn and (63)Zn (as comparators) in close agreement. Results from separate measurements using foil thicknesses of 100, 75, 50 or 25µm to form the stacks also concurred closely. Energy was determined by iterative least-squares comparison of the normalized measured activity profile in a target-stack with the equivalent calculated normalized profile, using 'energy' as the regression variable. The technique exploits the uniqueness of the shape of the activity vs. depth profile of the monitor isotope in the target stack for a specified incident energy. The energy using (65)Zn activity profiles and 50-µm foils alone was 18.03±0.02 [SD] MeV (95%CI=17.98-18.08), and 18.06±0.12MeV (95%CI=18.02-18.10; NS) when combining results from all isotopes and foil thicknesses. When the beam energy was re-measured using (65)Zn and 50-µm foils only, following a major upgrade of the ion sources and nonmagnetic beam controls the results were 18.11±0.05MeV (95%CI=18.00-18.23; NS compared with 'before'). Since measurement of only one Zn monitor isotope is required to determine the normalized activity profile this indirect yet precise technique does not require a direct beam-current measurement or a gamma-spectroscopy efficiency calibrated with standard sources, though a characteristic photopeak must be identified. It has some advantages over published methods using the ratio of cross sections of monitor reactions, including the ability to determine energies across a broader range and without need for customized beam degraders.


Subject(s)
Cyclotrons/statistics & numerical data , Protons , Zinc Radioisotopes , Copper , Humans , Radiometry/statistics & numerical data , Zinc Radioisotopes/analysis
3.
Australas Phys Eng Sci Med ; 32(2): 92-7, 2009 Jun.
Article in English | MEDLINE | ID: mdl-19623860

ABSTRACT

A simple and rapid technique to measure the proton beam energy in the external beam line of a medical cyclotron has been examined. A stack of 0.1 mm thick high purity copper (Cu) foils was bombarded and the relative activity of 65Zn produced in each foil was compared to a computational model that predicted activity, based on proton stopping power, reaction cross-sectional data, and beam energy. In the model, the beam energy was altered iteratively until the best match between computed and measured relative activities of the stack of disks was obtained. The main advantage of this method is that it does not require the comparison of the activities of different isotopes of zinc arising from (p, xn) reactions in the Cu, which would require the gamma photon detector being calibrated for different energy responses. Using this technique the proton beam energy of a nominally 18 MeV standard isochronous medical cyclotron was measured as 17.49 +/- 0.04 (SD) MeV, with a precision of 0.2% CV.


Subject(s)
Cyclotrons/standards , Protons , Radiometry/methods , Copper , Reference Standards , Zinc
4.
Australas Phys Eng Sci Med ; 29(3): 257-9, 2006 Sep.
Article in English | MEDLINE | ID: mdl-17058587

ABSTRACT

During shielding calculations for a new multislice CT (MSCT) scanner it was found that the manufacturer's data indicated significantly higher external scatter doses than would be generated for a single slice CT (SSCT). Even allowing for increased beam width, the manufacturer's data indicated that the scatter dose per scan was higher by a factor of about 3 to 4. The magnitude of the discrepancy was contrary to expectations and also contrary to a statement by the UK ImPACT group, which indicated that when beam width is taken into account, the scatter doses should be similar. The matter was investigated by comparing scatter doses from an SSCT and an MSCT. Scatter measurements were performed at three points using a standard perspex CTDI phantom, and CT dose indices were also measured to compare scanner output. MSCT measurements were performed with a 40 mm wide beam, SSCT measurements with a 10 mm wide beam. A film badge survey was also performed after the installation of the MSCT scanner to assess the adequacy of lead shielding in the room. It was found that the scatter doses from the MSCT were lower than indicated by the manufacturer's data. MSCT scatter doses were approximately 4 times higher than those from the SSCT, consistent with expectations due to beam width differences. The CT dose indices were similar, and the film badge survey indicated that the existing shielding, which had been adequate for the SSCT, was also adequate for the MSCT.


Subject(s)
Film Dosimetry/methods , Radiation Protection/methods , Risk Assessment/methods , Tomography, X-Ray Computed/instrumentation , Equipment Failure Analysis , Radiation Dosage , Radiation Protection/instrumentation , Risk Factors , Scattering, Radiation
5.
Australas Phys Eng Sci Med ; 24(3): 181-3, 2001 Sep.
Article in English | MEDLINE | ID: mdl-11764402

ABSTRACT

A NERO 8000 non-invasive x-ray beam analyser was examined under fluoroscopic conditions with respect to the measurement of tube voltage. An invasive measurement of tube voltage was performed concurrently to test the accuracy of the NERO device over a range of tube voltages and currents. The data indicated that for the NERO 8000 the accuracy of kVp average measurement is dependent on input doserate. With the tube current set to 1 mA the doserates ranged from 2.1 to 6.5 mGy/min over the range of tube voltages measured. The associated kVp average measurement errors ranged from 6 to 28%. At 5 mA the doserates ranged from 20.4 to 66.0 mGy/min and the associated errors ranged from 0 to 3%. A possible explanation for the drop in accuracy of kVp measurements at low doserates is a decreased signal to noise ratio. The kV waveforms from inaccurate measurements appeared noisier than waveforms from more accurate measurements. NERO may be interpreting noise spikes as voltage readings and including them in the kVp average calculations, causing an erroneously high kVp average reading. The data from this experiment suggest that when performing non-invasive measurements of tube voltage accuracy in fluoroscopy mode, the doserate must be taken into consideration.


Subject(s)
Fluoroscopy/instrumentation , Technology, Radiologic , Biophysical Phenomena , Biophysics , Fluoroscopy/standards , Humans , Quality Assurance, Health Care
SELECTION OF CITATIONS
SEARCH DETAIL
...