Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 95
Filter
1.
Med Image Anal ; 94: 103108, 2024 May.
Article in English | MEDLINE | ID: mdl-38447244

ABSTRACT

Cardiac in silico clinical trials can virtually assess the safety and efficacy of therapies using human-based modelling and simulation. These technologies can provide mechanistic explanations for clinically observed pathological behaviour. Designing virtual cohorts for in silico trials requires exploiting clinical data to capture the physiological variability in the human population. The clinical characterisation of ventricular activation and the Purkinje network is challenging, especially non-invasively. Our study aims to present a novel digital twinning pipeline that can efficiently generate and integrate Purkinje networks into human multiscale biventricular models based on subject-specific clinical 12-lead electrocardiogram and magnetic resonance recordings. Essential novel features of the pipeline are the human-based Purkinje network generation method, personalisation considering ECG R wave progression as well as QRS morphology, and translation from reduced-order Eikonal models to equivalent biophysically-detailed monodomain ones. We demonstrate ECG simulations in line with clinical data with clinical image-based multiscale models with Purkinje in four control subjects and two hypertrophic cardiomyopathy patients (simulated and clinical QRS complexes with Pearson's correlation coefficients > 0.7). Our methods also considered possible differences in the density of Purkinje myocardial junctions in the Eikonal-based inference as regional conduction velocities. These differences translated into regional coupling effects between Purkinje and myocardial models in the monodomain formulation. In summary, we demonstrate a digital twin pipeline enabling simulations yielding clinically consistent ECGs with clinical CMR image-based biventricular multiscale models, including personalised Purkinje in healthy and cardiac disease conditions.


Subject(s)
Magnetic Resonance Imaging , Purkinje Fibers , Humans , Purkinje Fibers/diagnostic imaging , Purkinje Fibers/anatomy & histology , Purkinje Fibers/physiology , Myocardium , Computer Simulation , Electrocardiography/methods
2.
J Chem Phys ; 160(6)2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38353308

ABSTRACT

Stochastic differential equations (SDEs) are a powerful tool to model fluctuations and uncertainty in complex systems. Although numerical methods have been designed to simulate SDEs effectively, it is still problematic when numerical solutions may be negative, but application problems require positive simulations. To address this issue, we propose balanced implicit Patankar-Euler methods to ensure positive simulations of SDEs. Instead of considering the addition of balanced terms to explicit methods in existing balanced methods, we attempt the deletion of possible negative terms from the explicit methods to maintain positivity of numerical simulations. The designed balanced terms include negative-valued drift terms and potential negative diffusion terms. The proposed method successfully addresses the issue of divisions with very small denominators in our recently designed stochastic Patankar method. Stability analysis shows that the balanced implicit Patankar-Euler method has much better stability properties than our recently designed composite Patankar-Euler method. Four SDE systems are used to examine the effectiveness, accuracy, and convergence properties of balanced implicit Patankar-Euler methods. Numerical results suggest that the proposed balanced implicit Patankar-Euler method is an effective and efficient approach to ensure positive simulations when any appropriate stepsize is used in simulating SDEs of biological regulatory systems.

3.
Sci Rep ; 13(1): 11828, 2023 07 22.
Article in English | MEDLINE | ID: mdl-37481668

ABSTRACT

This paper uses recurrence quantification analysis (RQA) combined with entropy measures and organization indices to characterize arrhythmic patterns and dynamics in computer simulations of cardiac tissue. We performed different simulations of cardiac tissues of sizes comparable to the human heart atrium. In these simulations, we observed four classic arrhythmic patterns: a spiral wave anchored to a highly fibrotic region resulting in sustained re-entry, a meandering spiral wave, fibrillation, and a spiral wave anchored to a scar region that breaks up into wavelets away from the main rotor. A detailed analysis revealed that, within the same simulation, maps of RQA metrics could differentiate regions with regular AP propagation from ones with chaotic activity. In particular, the combination of two RQA metrics, the length of the longest diagonal string of recurrence points and the mean length of diagonal lines, was able to identify the location of rotor tips, which are the active elements that maintain spiral waves and fibrillation. By proposing low-dimensional models based on the mean value and spatial correlation of metrics calculated from membrane potential time series, we identify RQA-based metrics that successfully separate the four different types of cardiac arrhythmia into distinct regions of the feature space, and thus might be used for automatic classification, in particular distinguishing between fibrillation driven by self-sustaining chaos and that created by a persistent rotor and wavebreak. We also discuss the practical applicability of such an approach.


Subject(s)
Benchmarking , Heart Atria , Humans , Cardiac Conduction System Disease , Cicatrix , Computer Simulation
4.
J Chem Phys ; 159(2)2023 Jul 14.
Article in English | MEDLINE | ID: mdl-37428041

ABSTRACT

Stochastic differential equations (SDE) are a powerful tool to model biological regulatory processes with intrinsic and extrinsic noise. However, numerical simulations of SDE models may be problematic if the values of noise terms are negative and large, which is not realistic for biological systems since the molecular copy numbers or protein concentrations should be non-negative. To address this issue, we propose the composite Patankar-Euler methods to obtain positive simulations of SDE models. A SDE model is separated into three parts, namely, the positive-valued drift terms, negative-valued drift terms, and diffusion terms. We first propose the deterministic Patankar-Euler method to avoid negative solutions generated from the negative-valued drift terms. The stochastic Patankar-Euler method is designed to avoid negative solutions generated from both the negative-valued drift terms and diffusion terms. These Patankar-Euler methods have the strong convergence order of a half. The composite Patankar-Euler methods are the combinations of the explicit Euler method, deterministic Patankar-Euler method, and stochastic Patankar-Euler method. Three SDE system models are used to examine the effectiveness, accuracy, and convergence properties of the composite Patankar-Euler methods. Numerical results suggest that the composite Patankar-Euler methods are effective methods to ensure positive simulations when any appropriate stepsize is used.


Subject(s)
Models, Biological , Stochastic Processes , Diffusion
5.
R Soc Open Sci ; 10(7): 221177, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37416823

ABSTRACT

Studying membrane dynamics is important to understand the cellular response to environmental stimuli. A decisive spatial characteristic of the plasma membrane is its compartmental structure created by the actin-based membrane-skeleton (fences) and anchored transmembrane proteins (pickets). Particle-based reaction-diffusion simulation of the membrane offers a suitable temporal and spatial resolution to analyse its spatially heterogeneous and stochastic dynamics. Fences have been modelled via hop probabilities, potentials or explicit picket fences. Our study analyses the different approaches' constraints and their impact on simulation results and performance. Each of the methods comes with its own constraints; the picket fences require small timesteps, potential fences might induce a bias in diffusion in crowded systems, and probabilistic fences, in addition to carefully scaling the probability with the timesteps, induce higher computational costs for each propagation step.

6.
Commun Nonlinear Sci Numer Simul ; 116: None, 2023 Jan.
Article in English | MEDLINE | ID: mdl-37113591

ABSTRACT

Computational models in cardiac electrophysiology are notorious for long runtimes, restricting the numbers of nodes and mesh elements in the numerical discretisations used for their solution. This makes it particularly challenging to incorporate structural heterogeneities on small spatial scales, preventing a full understanding of the critical arrhythmogenic effects of conditions such as cardiac fibrosis. In this work, we explore the technique of homogenisation by volume averaging for the inclusion of non-conductive micro-structures into larger-scale cardiac meshes with minor computational overhead. Importantly, our approach is not restricted to periodic patterns, enabling homogenised models to represent, for example, the intricate patterns of collagen deposition present in different types of fibrosis. We first highlight the importance of appropriate boundary condition choice for the closure problems that define the parameters of homogenised models. Then, we demonstrate the technique's ability to correctly upscale the effects of fibrotic patterns with a spatial resolution of 10 µm into much larger numerical mesh sizes of 100- 250 µm . The homogenised models using these coarser meshes correctly predict critical pro-arrhythmic effects of fibrosis, including slowed conduction, source/sink mismatch, and stabilisation of re-entrant activation patterns. As such, this approach to homogenisation represents a significant step towards whole organ simulations that unravel the effects of microscopic cardiac tissue heterogeneities.

7.
PLoS One ; 17(11): e0276780, 2022.
Article in English | MEDLINE | ID: mdl-36367895

ABSTRACT

In the last decade, Australia has experienced an overall decline in red cell demand, but there has been an increased need for phenotyped matched red cells. Lifeblood and mathematicians from Queensland universities have developed a probabilistic model to determine the percentage of the donor panel that would need extended antigen typing to meet this increasing demand, and an estimated timeline to achieve the optimum required phenotyped (genotyped) panel. Mathematical modelling, based on Multinomial distributions, was used to provide guidance on the percentage of typed donor panel needed, based on recent historical blood request data and the current donor panel size. Only antigen combinations determined to be uncommon, but not rare, were considered. Simulations were run to attain at least 95% success percentage. Modelling predicted a target of 38% of the donor panel, or 205,000 donors, would need to be genotyped to meet the current demand. If 5% of weekly returning donors were genotyped, this target would be reached within 12 years. For phenotyping, 35% or 188,000 donors would need to be phenotyped to meet Lifeblood's demand. With the current level of testing, this would take eight years but could be performed within three years if testing was increased to 9% of weekly returning donors. An additional 26,140 returning donors need to be phenotyped annually to maintain this panel. This mathematical model will inform business decisions and assist Lifeblood in determining the level of investment required to meet the desired timeline to achieve the optimum donor panel size.


Subject(s)
Blood Donors , Erythrocytes , Humans , Genotype , Phenotype , Models, Theoretical
8.
Sci Adv ; 8(38): eabm5952, 2022 Sep 23.
Article in English | MEDLINE | ID: mdl-36129974

ABSTRACT

This work introduces a comprehensive approach to assess the sensitivity of model outputs to changes in parameter values, constrained by the combination of prior beliefs and data. This approach identifies stiff parameter combinations strongly affecting the quality of the model-data fit while simultaneously revealing which of these key parameter combinations are informed primarily by the data or are also substantively influenced by the priors. We focus on the very common context in complex systems where the amount and quality of data are low compared to the number of model parameters to be collectively estimated, and showcase the benefits of this technique for applications in biochemistry, ecology, and cardiac electrophysiology. We also show how stiff parameter combinations, once identified, uncover controlling mechanisms underlying the system being modeled and inform which of the model parameters need to be prioritized in future experiments for improved parameter inference from collective model-data fitting.

9.
J Comput Phys ; 459: None, 2022 Jun 15.
Article in English | MEDLINE | ID: mdl-35959500

ABSTRACT

Fibrosis, the excess of extracellular matrix, can affect, and even block, propagation of action potential in cardiac tissue. This can result in deleterious effects on heart function, but the nature and severity of these effects depend strongly on the localisation of fibrosis and its by-products in cardiac tissue, such as collagen scar formation. Computer simulation is an important means of understanding the complex effects of fibrosis on activation patterns in the heart, but concerns of computational cost place restrictions on the spatial resolution of these simulations. In this work, we present a novel numerical homogenisation technique that uses both Eikonal and graph approaches to allow fine-scale heterogeneities in conductivity to be incorporated into a coarser mesh. Homogenisation achieves this by deriving effective conductivity tensors so that a coarser mesh can then be used for numerical simulation. By taking a graph-based approach, our homogenisation technique functions naturally on irregular grids and does not rely upon any assumptions of periodicity, even implicitly. We present results of action potential propagation through fibrotic tissue in two dimensions that show the graph-based homogenisation technique is an accurate and effective way to capture fine-scale domain information on coarser meshes in the context of sharp-fronted travelling waves of activation. As test problems, we consider excitation propagation in tissue with diffuse fibrosis and through a tunnel-like structure designed to test homogenisation, interaction of an excitation wave with a scar region, and functional re-entry.

10.
J R Soc Interface ; 19(189): 20210940, 2022 04.
Article in English | MEDLINE | ID: mdl-35472269

ABSTRACT

In this work, we: (i) review likelihood-based inference for parameter estimation and the construction of confidence regions; and (ii) explore the use of techniques from information geometry, including geodesic curves and Riemann scalar curvature, to supplement typical techniques for uncertainty quantification, such as Bayesian methods, profile likelihood, asymptotic analysis and bootstrapping. These techniques from information geometry provide data-independent insights into uncertainty and identifiability, and can be used to inform data collection decisions. All code used in this work to implement the inference and information geometry techniques is available on GitHub.


Subject(s)
Models, Biological , Bayes Theorem , Likelihood Functions , Uncertainty
11.
Elife ; 102021 11 29.
Article in English | MEDLINE | ID: mdl-34842141

ABSTRACT

Tumour spheroids are common in vitro experimental models of avascular tumour growth. Compared with traditional two-dimensional culture, tumour spheroids more closely mimic the avascular tumour microenvironment where spatial differences in nutrient availability strongly influence growth. We show that spheroids initiated using significantly different numbers of cells grow to similar limiting sizes, suggesting that avascular tumours have a limiting structure; in agreement with untested predictions of classical mathematical models of tumour spheroids. We develop a novel mathematical and statistical framework to study the structure of tumour spheroids seeded from cells transduced with fluorescent cell cycle indicators, enabling us to discriminate between arrested and cycling cells and identify an arrested region. Our analysis shows that transient spheroid structure is independent of initial spheroid size, and the limiting structure can be independent of seeding density. Standard experimental protocols compare spheroid size as a function of time; however, our analysis suggests that comparing spheroid structure as a function of overall size produces results that are relatively insensitive to variability in spheroid size. Our experimental observations are made using two melanoma cell lines, but our modelling framework applies across a wide range of spheroid culture conditions and cell lines.


Subject(s)
Melanoma/physiopathology , Spheroids, Cellular/cytology , Spheroids, Cellular/physiology , Tumor Cells, Cultured/cytology , Tumor Cells, Cultured/physiology , Humans , Models, Biological
12.
Front Physiol ; 12: 709485, 2021.
Article in English | MEDLINE | ID: mdl-34483962

ABSTRACT

Cardiac fibrosis and other scarring of the heart, arising from conditions ranging from myocardial infarction to ageing, promotes dangerous arrhythmias by blocking the healthy propagation of cardiac excitation. Owing to the complexity of the dynamics of electrical signalling in the heart, however, the connection between different arrangements of blockage and various arrhythmic consequences remains poorly understood. Where a mechanism defies traditional understanding, machine learning can be invaluable for enabling accurate prediction of quantities of interest (measures of arrhythmic risk) in terms of predictor variables (such as the arrangement or pattern of obstructive scarring). In this study, we simulate the propagation of the action potential (AP) in tissue affected by fibrotic changes and hence detect sites that initiate re-entrant activation patterns. By separately considering multiple different stimulus regimes, we directly observe and quantify the sensitivity of re-entry formation to activation sequence in the fibrotic region. Then, by extracting the fibrotic structures around locations that both do and do not initiate re-entries, we use neural networks to determine to what extent re-entry initiation is predictable, and over what spatial scale conduction heterogeneities appear to act to produce this effect. We find that structural information within about 0.5 mm of a given point is sufficient to predict structures that initiate re-entry with more than 90% accuracy.

13.
J R Soc Interface ; 18(181): 20210241, 2021 08.
Article in English | MEDLINE | ID: mdl-34428951

ABSTRACT

Optimal control theory provides insight into complex resource allocation decisions. The forward-backward sweep method (FBSM) is an iterative technique commonly implemented to solve two-point boundary value problems arising from the application of Pontryagin's maximum principle (PMP) in optimal control. The FBSM is popular in systems biology as it scales well with system size and is straightforward to implement. In this review, we discuss the PMP approach to optimal control and the implementation of the FBSM. By conceptualizing the FBSM as a fixed point iteration process, we leverage and adapt existing acceleration techniques to improve its rate of convergence. We show that convergence improvement is attainable without prohibitively costly tuning of the acceleration techniques. Furthermore, we demonstrate that these methods can induce convergence where the underlying FBSM fails to converge. All code used in this work to implement the FBSM and acceleration techniques is available on GitHub at https://github.com/Jesse-Sharp/Sharp2021.


Subject(s)
Acceleration , Systems Biology
14.
Med Image Anal ; 73: 102143, 2021 10.
Article in English | MEDLINE | ID: mdl-34271532

ABSTRACT

The realisation of precision cardiology requires novel techniques for the non-invasive characterisation of individual patients' cardiac function to inform therapeutic and diagnostic decision-making. Both electrocardiography and imaging are used for the clinical diagnosis of cardiac disease. The integration of multi-modal datasets through advanced computational methods could enable the development of the cardiac 'digital twin', a comprehensive virtual tool that mechanistically reveals a patient's heart condition from clinical data and simulates treatment outcomes. The adoption of cardiac digital twins requires the non-invasive efficient personalisation of the electrophysiological properties in cardiac models. This study develops new computational techniques to estimate key ventricular activation properties for individual subjects by exploiting the synergy between non-invasive electrocardiography, cardiac magnetic resonance (CMR) imaging and modelling and simulation. More precisely, we present an efficient sequential Monte Carlo approximate Bayesian computation-based inference method, integrated with Eikonal simulations and torso-biventricular models constructed based on clinical CMR imaging. The method also includes a novel strategy to treat combined continuous (conduction speeds) and discrete (earliest activation sites) parameter spaces and an efficient dynamic time warping-based ECG comparison algorithm. We demonstrate results from our inference method on a cohort of twenty virtual subjects with cardiac ventricular myocardial-mass volumes ranging from 74 cm3 to 171 cm3 and considering low versus high resolution for the endocardial discretisation (which determines possible locations of the earliest activation sites). Results show that our method can successfully infer the ventricular activation properties in sinus rhythm from non-invasive epicardial activation time maps and ECG recordings, achieving higher accuracy for the endocardial speed and sheet (transmural) speed than for the fibre or sheet-normal directed speeds.


Subject(s)
Electrocardiography , Heart Ventricles , Bayes Theorem , Heart , Heart Ventricles/diagnostic imaging , Humans , Magnetic Resonance Imaging
15.
Biophys J ; 120(1): 133-142, 2021 01 05.
Article in English | MEDLINE | ID: mdl-33253635

ABSTRACT

Bacteria invest in a slow-growing subpopulation, called persisters, to ensure survival in the face of uncertainty. This hedging strategy is remarkably similar to financial hedging, where diversifying an investment portfolio protects against economic uncertainty. We provide a new, to our knowledge, theoretical foundation for understanding cellular hedging by unifying the study of biological population dynamics and the mathematics of financial risk management through optimal control theory. Motivated by the widely accepted role of volatility in the emergence of persistence, we consider several models of environmental volatility described by continuous-time stochastic processes. This allows us to study an emergent cellular hedging strategy that maximizes the expected per capita growth rate of the population. Analytical and simulation results probe the optimal persister strategy, revealing results that are consistent with experimental observations and suggest new opportunities for experimental investigation and design. Overall, we provide a new, to our knowledge, way of conceptualizing and modeling cellular decision making in volatile environments by explicitly unifying theory from mathematical biology and finance.


Subject(s)
Bacteria , Biological Evolution , Computer Simulation , Population Dynamics , Stochastic Processes
16.
J R Soc Interface ; 17(173): 20200652, 2020 12.
Article in English | MEDLINE | ID: mdl-33323054

ABSTRACT

Mathematical models are routinely calibrated to experimental data, with goals ranging from building predictive models to quantifying parameters that cannot be measured. Whether or not reliable parameter estimates are obtainable from the available data can easily be overlooked. Such issues of parameter identifiability have important ramifications for both the predictive power of a model, and the mechanistic insight that can be obtained. Identifiability analysis is well-established for deterministic, ordinary differential equation (ODE) models, but there are no commonly adopted methods for analysing identifiability in stochastic models. We provide an accessible introduction to identifiability analysis and demonstrate how existing ideas for analysis of ODE models can be applied to stochastic differential equation (SDE) models through four practical case studies. To assess structural identifiability, we study ODEs that describe the statistical moments of the stochastic process using open-source software tools. Using practically motivated synthetic data and Markov chain Monte Carlo methods, we assess parameter identifiability in the context of available data. Our analysis shows that SDE models can often extract more information about parameters than deterministic descriptions. All code used to perform the analysis is available on Github.


Subject(s)
Models, Biological , Systems Biology , Models, Theoretical , Software , Stochastic Processes
17.
Ecol Evol ; 10(19): 10829-10850, 2020 Oct.
Article in English | MEDLINE | ID: mdl-33072299

ABSTRACT

The jaguar (Panthera onca) is the dominant predator in Central and South America, but is now considered near-threatened. Estimating jaguar population size is difficult, due to uncertainty in the underlying dynamical processes as well as highly variable and sparse data. We develop a stochastic temporal model of jaguar abundance in the Peruvian Amazon, taking into account prey availability, under various climate change scenarios. The model is calibrated against existing data sets and an elicitation study in Pacaya Samiria. In order to account for uncertainty and variability, we construct a population of models over four key parameters, namely three scaling parameters for aquatic, small land, and large land animals and a hunting index. We then use this population of models to construct probabilistic evaluations of jaguar populations under various climate change scenarios characterized by increasingly severe flood and drought events and discuss the implications on jaguar numbers. Results imply that jaguar populations exhibit some robustness to extreme drought and flood, but that repeated exposure to these events over short periods can result in rapid decline. However, jaguar numbers could return to stability-albeit at lower numbers-if there are periods of benign climate patterns and other relevant factors are conducive.

18.
Philos Trans A Math Phys Eng Sci ; 378(2173): 20190341, 2020 Jun 12.
Article in English | MEDLINE | ID: mdl-32448068

ABSTRACT

Ischaemia, in which inadequate blood supply compromises and eventually kills regions of cardiac tissue, can cause many types of arrhythmia, some life-threatening. A significant component of this is the effects of the resulting hypoxia, and concomitant hyperklaemia and acidosis, on the electrophysiological properties of myocytes. Clinical and experimental data have also shown that regions of structural heterogeneity (fibrosis, necrosis, fibro-fatty infiltration) can act as triggers for arrhythmias under acute ischaemic conditions. Mechanistic models have successfully captured these effects in silico. However, the relative significance of these separate facets of the condition, and how sensitive arrhythmic risk is to the extents of each, is far less explored. In this work, we use partitioned Gaussian process emulation and new metrics for source-sink mismatch that rely on simulations of bifurcating cardiac fibres to interrogate a model of heterogeneous ischaemic tissue. Re-entries were most sensitive to the level of hypoxia and the fraction of non-excitable tissue. In addition, our results reveal both protective and pro-arrhythmic effects of hyperklaemia, and present the levels of hyperklaemia, hypoxia and percentage of non-excitable tissue that pose the highest arrhythmic risks. This article is part of the theme issue 'Uncertainty quantification in cardiac and cardiovascular modelling and simulation'.


Subject(s)
Electrophysiological Phenomena , Heart Conduction System/physiopathology , Models, Cardiovascular , Myocardial Ischemia/physiopathology , Heart Conduction System/pathology , Myocardial Ischemia/pathology , Risk , Systole
19.
Viruses ; 12(5)2020 05 18.
Article in English | MEDLINE | ID: mdl-32443524

ABSTRACT

The host-vector shuttle and the bottleneck in dengue transmission is a significant aspect with regard to the study of dengue outbreaks. As mosquitoes require 100-1000 times more virus to become infected than human, the transmission of dengue virus from human to mosquito is a vulnerability that can be targeted to improve disease control. In order to capture the heterogeneity in the infectiousness of an infected patient population towards the mosquito population, we calibrate a population of host-to-vector virus transmission models based on an experimentally quantified infected fraction of a mosquito population. Once the population of models is well-calibrated, we deploy a population of controls that helps to inhibit the human-to-mosquito transmission of the dengue virus indirectly by reducing the viral load in the patient body fluid. We use an optimal bang-bang control on the administration of the defective virus (transmissible interfering particles (TIPs)) to symptomatic patients in the course of their febrile period and observe the dynamics in successful reduction of dengue spread into mosquitoes.


Subject(s)
Defective Viruses/physiology , Dengue Virus/physiology , Dengue/prevention & control , Dengue/transmission , Mosquito Vectors/virology , Aedes/virology , Animals , Dengue/virology , Humans , Models, Theoretical , Viral Load , Viremia/virology
20.
J Theor Biol ; 497: 110277, 2020 07 21.
Article in English | MEDLINE | ID: mdl-32294472

ABSTRACT

Strategic management of populations of interacting biological species routinely requires interventions combining multiple treatments or therapies. This is important in key research areas such as ecology, epidemiology, wound healing and oncology. Despite the well developed theory and techniques for determining single optimal controls, there is limited practical guidance supporting implementation of combination therapies. In this work we use optimal control theory to calculate optimal strategies for applying combination therapies to a model of acute myeloid leukaemia. We present a versatile framework to systematically explore the trade-offs that arise in designing combination therapy protocols using optimal control. We consider various combinations of continuous and bang-bang (discrete) controls, and we investigate how the control dynamics interact and respond to changes in the weighting and form of the pay-off characterising optimality. We demonstrate that the optimal controls respond non-linearly to treatment strength and control parameters, due to the interactions between species. We discuss challenges in appropriately characterising optimality in a multiple control setting and provide practical guidance for applying multiple optimal controls. Code used in this work to implement multiple optimal controls is available on GitHub.


Subject(s)
Leukemia, Myeloid, Acute , Combined Modality Therapy , Ecology , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...