Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Chem Soc Rev ; 43(7): 2141-6, 2014 Apr 07.
Article in English | MEDLINE | ID: mdl-24158602

ABSTRACT

Polymer-assisted deposition (PAD) is one of the chemical solution deposition methods which have been successfully used to grow films, form coatings, and synthesize nanostructured materials. In comparison with other conventional solution-based deposition techniques, PAD differs in its use of water-soluble polymers in the solution that prevent the metal ions from unwanted chemical reactions and keep the solution stable. Furthermore, filtration to remove non-coordinated cations and anions in the PAD process ensures well controlled nucleation, which enables the growth of high quality epitaxial films with desired structural and physical properties. The precursor solution is prepared by mixing water-soluble polymer(s) with salt(s). Thermal treatment of the precursor films in a controlled environment leads to the formation of desired materials. Using BaTiO3 grown on SrTiO3 and LaMnO3 on LaAlO3 as model systems, we show the effect of filtration on the nucleation and growth of epitaxial complex metal-oxide films based on the PAD process.

2.
Chem Soc Rev ; 42(2): 439-49, 2013 Jan 21.
Article in English | MEDLINE | ID: mdl-23038606

ABSTRACT

In this tutorial article, the recent development of polymer assisted deposition (PAD) for the growth of a wide range of materials, in particular in thin films, is reviewed. Specifically, we describe the unique chemistry and processes of PAD for the deposition of metals, metal-oxides, metal-nitrides, metal-carbides, and their derived composites. Many examples are given not only to illustrate the powerfulness of PAD for high quality coatings, but also to give readers an opportunity to evaluate this technique for specific applications. The challenging issues related to PAD, based on the authors' experience, are also discussed in this review article.

3.
Nat Commun ; 2: 428, 2011 Aug 16.
Article in English | MEDLINE | ID: mdl-21847102

ABSTRACT

The formation of carbon nanotube and superconductor composites makes it possible to produce new and/or improved functionalities that the individual material does not possess. Here we show that coating carbon nanotube forests with superconducting niobium carbide (NbC) does not destroy the microstructure of the nanotubes. NbC also shows much improved superconducting properties such as a higher irreversibility and upper critical field. An upper critical field value of ~5 T at 4.2 K is much greater than the 1.7 T reported in the literature for pure bulk NbC. Furthermore, the aligned carbon nanotubes induce anisotropy in the upper critical field, with a higher upper critical field occurring when the magnetic field is parallel to the carbon nanotube growth direction. These results suggest that highly oriented carbon nanotubes embedded in superconducting NbC matrix can function as defects and effectively enhance the superconducting properties of the NbC.

4.
J Phys Chem B ; 111(26): 7497-500, 2007 Jul 05.
Article in English | MEDLINE | ID: mdl-17571878

ABSTRACT

Epitaxial ferromagnetic SrRuO3 thin films with a room-temperature resistivity of 300 microOmega.cm have been successfully grown on LaAlO3(001) substrates at a processing temperature in the range of 550-750 degrees C by a polymer-assisted deposition technique. X-ray diffraction analysis shows good epitaxial quality of SrRuO3 thin films, giving values of the full width at half-maximum (FWHM) of 0.42 degrees from the rocking curve for the (002) reflection and 1.1 degrees from the in-plane phi scan for the (204) reflection. Both the resistivity and the magnetization versus temperature measurements show that the SrRuO3 films are ferromagnetic with a transition temperature of 160 K. The spontaneous magnetization near the ferromagnetic transition follows the scaling law, and the low-temperature magnetization follows the Bloch law.

5.
Nat Mater ; 3(8): 529-32, 2004 Aug.
Article in English | MEDLINE | ID: mdl-15258574

ABSTRACT

Metal oxides are emerging as important materials for their versatile properties such as high-temperature superconductivity, ferroelectricity, ferromagnetism, piezoelectricity and semiconductivity. Metal-oxide films are conventionally grown by physical and chemical vapour deposition. However, the high cost of necessary equipment and restriction of coatings on a relatively small area have limited their potential applications. Chemical-solution depositions such as sol-gel are more cost-effective, but many metal oxides cannot be deposited and the control of stoichiometry is not always possible owing to differences in chemical reactivity among the metals. Here we report a novel process to grow metal-oxide films in large areas at low cost using polymer-assisted deposition (PAD), where the polymer controls the viscosity and binds metal ions, resulting in a homogeneous distribution of metal precursors in the solution and the formation of uniform metal-organic films. The latter feature makes it possible to grow simple and complex crack-free epitaxial metal-oxides.


Subject(s)
Crystallization/methods , Materials Testing/methods , Metallurgy/methods , Nanotechnology/methods , Polymers/chemistry , Titanium/chemistry , Adsorption , Crystallography/methods , Feasibility Studies , Gases/chemistry , Manufactured Materials , Membranes, Artificial , Metals/chemistry , Molecular Conformation , Oxides/chemistry , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL
...