Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Curr Biol ; 10(15): 939-42, 2000.
Article in English | MEDLINE | ID: mdl-10959844

ABSTRACT

The roles of the Ca2+-mobilising messenger inositol 1,4,5-trisphosphate (InsP3) in heart are unclear, although many hormones activate InsP3 production in cardiomyocytes and some of their inotropic, chronotropic and arrhythmogenic effects may be due to Ca2+ release mediated by InsP3 receptors (InsP3Rs) [1-3]. In the present study, we examined the expression and subcellular localisation of InsP3R isoforms, and investigated their potential role in modulating excitation-contraction coupling (EC coupling). Western, PCR and InsP3-binding analysis indicated that both atrial and ventricular myocytes expressed mainly type II InsP3Rs, with approximately sixfold higher levels of InsP3Rs in atrial cells. Co-immunostaining of atrial myocytes with antibodies against type II ryanodine receptors (RyRs) and type II InsP3Rs revealed that the latter were arranged in the subsarcolemmal space where they largely co-localised with the junctional RyRs. Stimulation of quiescent or electrically paced atrial myocytes with a membrane-permeant InsP3 ester, which enters cells and directly activates InsP3Rs, caused the appearance of spontaneous Ca2+-release events. In addition, in paced cells, the InsP3 ester evoked an increase in the amplitudes of action potential-evoked Ca2+ transients. These data indicate that atrial cardiomyocytes express functional InsP3Rs, and that these channels could modulate EC coupling.


Subject(s)
Calcium Channels/metabolism , Heart/physiology , Myocardial Contraction/physiology , Myocardium/metabolism , Receptors, Cytoplasmic and Nuclear/metabolism , Animals , Blotting, Western , In Vitro Techniques , Inositol 1,4,5-Trisphosphate Receptors , Myocardium/cytology , Polymerase Chain Reaction , Sarcoplasmic Reticulum/metabolism , Sarcoplasmic Reticulum/physiology
2.
J Pharmacol Exp Ther ; 292(1): 449-59, 2000 Jan.
Article in English | MEDLINE | ID: mdl-10604982

ABSTRACT

It is known that binding sites with endothelin(A) (ET)(A) and ET(B) receptor characteristics coexist in human heart but little is known about the receptors that mediate cardiostimulant effects of ET receptor agonists or their consequences. Functional studies were performed on isolated human cardiac tissues. The maximal positive inotropic effects of ET-1 were right atrium > left atrium = right ventricle. The rank order of potencies of agonists in right atrium was sarafotoxin S6c > ET-1 = ET-2 > or = ET-3. The ET(A) receptor-selective compounds BQ123 (10 microM) and A-127722 (1 microM) only slightly blocked (<0.5 log-unit shift) the effects of lower concentrations of ET-1, and the ET(B) receptor antagonist Ro46-8443 (10 microM) did not cause blockade. SB 209670 caused concentration-dependent rightward shifts of ET-1 and sarafotoxin S6c concentration-effect curves with Schild slopes not different from one and affinities (-logM K(B)) of 7.0 and 7.9, respectively. ET-1 caused arrhythmic contractions in right atrial trabeculae that were prevented by 10 microM SB 209670 but not 10 microM BQ123 or 1 microM A-127722, precluding ET(A) receptors. ET-1 caused a higher incidence of arrhythmic contractions in tissues taken from patients treated with beta-blockers before surgery than in tissues from non-beta blocker-treated patients. Sarafotoxin S6c produced arrhythmias that were prevented by SB 209670. The positive inotropic effects of ET-1 in human right atrial myocardium are mediated mostly by a non-ET(A), non-ET(B) receptor. Ventricular inotropic ET receptors differ from atrial inotropic ET receptors. ET-1 induced arrhythmic contractions in human atria do not appear to be mediated by an ET(A) receptor.


Subject(s)
Arrhythmias, Cardiac/etiology , Endothelins/pharmacology , Indans/pharmacology , Myocardial Contraction/drug effects , Receptors, Endothelin/agonists , Adult , Aged , Atrial Appendage , Coronary Vessels/drug effects , Dose-Response Relationship, Drug , Female , Heart Ventricles , Humans , In Vitro Techniques , Male , Middle Aged , Muscle Contraction , Viper Venoms/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...