Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 13(1): 17335, 2023 10 13.
Article in English | MEDLINE | ID: mdl-37833394

ABSTRACT

We investigate the underlying assumptions and limits of applicability of several documented models for outbreaks of airborne disease inside buildings by showing how they may each be regarded as special cases of a system of equations which combines quanta conservation and compartmental epidemiological modelling. We investigate the behaviour of this system analytically, gaining insight to its behaviour at large time. We then investigate the characteristic timescales of an indoor outbreak, showing how the dilution rate of the space, and the quanta generation rate, incubation rate and removal rate associated with the illness may be used to predict the evolution of an outbreak over time, and may also be used to predict the relative performances of other indoor airborne outbreak models. The model is compared to a more commonly used model, in which it is assumed the environmental concentration of infectious aerosols adheres to a quasi-steady-state, so that the the dimensionless quanta concentration is equal to the the infectious fraction. The model presented here is shown to approach this limit exponentially to within an interval defined by the incubation and removal rates. This may be used to predict the maximum extent to which a case will deviate from the quasi steady state condition.


Subject(s)
Air Pollution, Indoor , Communicable Diseases , Humans , Epidemiological Models , Communicable Diseases/epidemiology , Disease Outbreaks
2.
Indoor Air ; 31(4): 1154-1163, 2021 07.
Article in English | MEDLINE | ID: mdl-33682974

ABSTRACT

The year 2020 has seen the world gripped by the effects of the COVID-19 pandemic. It is not the first time, nor will it be last, that our increasingly globalized world has been significantly affected by the emergence of a new disease. In much of the Northern Hemisphere, the academic year begins in September, and for many countries, September 2020 marked the return to full schooling after some period of enforced closure due to COVID-19. In this paper, we focus on the airborne spread of disease and investigate the likelihood of transmission in school environments. It is crucial to understand the risk airborne infection from COVID-19 might pose to pupils, teachers, and their wider social groups. We use monitored CO2 data from 45 classrooms in 11 different schools from within the UK to estimate the likelihood of infection occurring within classrooms regularly attended by the same staff and pupils. We determine estimates of the number of secondary infections arising via the airborne route over pre/asymptomatic periods on a rolling basis. Results show that, assuming relatively quiet desk-based work, the number of secondary infections is likely to remain reassuringly below unity; however, it can vary widely between classrooms of the same school even when the same ventilation system is present. Crucially, the data highlight significant variation with the seasons with January being nearly twice as risky as July. We show that such seasonal variations in risk due to changes in ventilation rates are robust and our results hold for wide variations in disease parameterizations, suggesting our results may be applied to a number of different airborne diseases.


Subject(s)
COVID-19/transmission , Inhalation Exposure , Schools/statistics & numerical data , Ventilation , Algorithms , Carbon Dioxide/analysis , Humans , Risk Assessment , Seasons
3.
Proc Math Phys Eng Sci ; 477(2247): 20200855, 2021 Mar.
Article in English | MEDLINE | ID: mdl-35153550

ABSTRACT

The year 2020 has seen the emergence of a global pandemic as a result of the disease COVID-19. This report reviews knowledge of the transmission of COVID-19 indoors, examines the evidence for mitigating measures, and considers the implications for wintertime with a focus on ventilation.

4.
Sci Rep ; 6: 37665, 2016 11 24.
Article in English | MEDLINE | ID: mdl-27883034

ABSTRACT

The Mpemba effect is the name given to the assertion that it is quicker to cool water to a given temperature when the initial temperature is higher. This assertion seems counter-intuitive and yet references to the effect go back at least to the writings of Aristotle. Indeed, at first thought one might consider the effect to breach fundamental thermodynamic laws, but we show that this is not the case. We go on to examine the available evidence for the Mpemba effect and carry out our own experiments by cooling water in carefully controlled conditions. We conclude, somewhat sadly, that there is no evidence to support meaningful observations of the Mpemba effect.

SELECTION OF CITATIONS
SEARCH DETAIL
...