Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nature ; 409(6822): 942-3, 2001 Feb 15.
Article in English | MEDLINE | ID: mdl-11237015

ABSTRACT

We constructed maps for eight chromosomes (1, 6, 9, 10, 13, 20, X and (previously) 22), representing one-third of the genome, by building landmark maps, isolating bacterial clones and assembling contigs. By this approach, we could establish the long-range organization of the maps early in the project, and all contig extension, gap closure and problem-solving was simplified by containment within local regions. The maps currently represent more than 94% of the euchromatic (gene-containing) regions of these chromosomes in 176 contigs, and contain 96% of the chromosome-specific markers in the human gene map. By measuring the remaining gaps, we can assess chromosome length and coverage in sequenced clones.


Subject(s)
Chromosomes, Human, Pair 10 , Chromosomes, Human, Pair 13 , Chromosomes, Human, Pair 1 , Chromosomes, Human, Pair 20 , Chromosomes, Human, Pair 6 , Contig Mapping , Genome, Human , X Chromosome , Humans
2.
Nature ; 409(6822): 953-8, 2001 Feb 15.
Article in English | MEDLINE | ID: mdl-11237021

ABSTRACT

We have placed 7,600 cytogenetically defined landmarks on the draft sequence of the human genome to help with the characterization of genes altered by gross chromosomal aberrations that cause human disease. The landmarks are large-insert clones mapped to chromosome bands by fluorescence in situ hybridization. Each clone contains a sequence tag that is positioned on the genomic sequence. This genome-wide set of sequence-anchored clones allows structural and functional analyses of the genome. This resource represents the first comprehensive integration of cytogenetic, radiation hybrid, linkage and sequence maps of the human genome; provides an independent validation of the sequence map and framework for contig order and orientation; surveys the genome for large-scale duplications, which are likely to require special attention during sequence assembly; and allows a stringent assessment of sequence differences between the dark and light bands of chromosomes. It also provides insight into large-scale chromatin structure and the evolution of chromosomes and gene families and will accelerate our understanding of the molecular bases of human disease and cancer.


Subject(s)
Chromosome Aberrations , Genetic Markers , Genome, Human , Chromosome Mapping , Chromosomes, Artificial, Bacterial , Cytogenetic Analysis , Human Genome Project , Humans , In Situ Hybridization, Fluorescence , Radiation Hybrid Mapping , Sequence Tagged Sites
3.
Nature ; 402(6761): 489-95, 1999 Dec 02.
Article in English | MEDLINE | ID: mdl-10591208

ABSTRACT

Knowledge of the complete genomic DNA sequence of an organism allows a systematic approach to defining its genetic components. The genomic sequence provides access to the complete structures of all genes, including those without known function, their control elements, and, by inference, the proteins they encode, as well as all other biologically important sequences. Furthermore, the sequence is a rich and permanent source of information for the design of further biological studies of the organism and for the study of evolution through cross-species sequence comparison. The power of this approach has been amply demonstrated by the determination of the sequences of a number of microbial and model organisms. The next step is to obtain the complete sequence of the entire human genome. Here we report the sequence of the euchromatic part of human chromosome 22. The sequence obtained consists of 12 contiguous segments spanning 33.4 megabases, contains at least 545 genes and 134 pseudogenes, and provides the first view of the complex chromosomal landscapes that will be found in the rest of the genome.


Subject(s)
Chromosomes, Human, Pair 22 , Human Genome Project , Sequence Analysis, DNA , Animals , Chromosome Mapping/methods , DNA , Gene Dosage , Humans , Mice , Molecular Sequence Data , Repetitive Sequences, Nucleic Acid , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...