Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Rev Sci Instrum ; 89(7): 073303, 2018 Jul.
Article in English | MEDLINE | ID: mdl-30068099

ABSTRACT

In this work, two compact, permanent magnet, electron spectrometers have been built to measure the electron beam energy at the Dual Axis Radiographic Hydrodynamic Test facility. Using H- and OH- anions, the spectrometers were calibrated at the Special Technologies Laboratory in Santa Barbara, California (USA). The spectrometers were mounted on a custom drift tube that allows the magnet assemblies to be translated, which increases the path length of the electrons traveling through the magnetic field and therefore increases the upper bound of the measurable electron kinetic energy. The measurable range of electron kinetic energies is between 2.8 MeV-4.1 MeV for the first spectrometer and 14.1 MeV-21.1 MeV for the second spectrometer, with an overall measurement uncertainty of 0.32%.

2.
Phys Rev Lett ; 92(8): 085002, 2004 Feb 27.
Article in English | MEDLINE | ID: mdl-14995784

ABSTRACT

Hot dense capsule implosions driven by Z-pinch x rays have been measured using a approximately 220 eV dynamic Hohlraum to implode 1.7-2.1 mm diameter gas-filled CH capsules. The capsules absorbed up to approximately 20 kJ of x rays. Argon tracer atom spectra were used to measure the T(e) approximately 1 keV electron temperature and the n(e) approximately 1-4 x 10(23) cm(-3) electron density. Spectra from multiple directions provide core symmetry estimates. Computer simulations agree well with the peak emission values of T(e), n(e), and symmetry, indicating reasonable understanding of the Hohlraum and implosion physics.

SELECTION OF CITATIONS
SEARCH DETAIL
...