Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Food Res Int ; 120: 560-567, 2019 06.
Article in English | MEDLINE | ID: mdl-31000272

ABSTRACT

While it is well known that the nature of the applied electric field and the heterogeneity of the tissue can influence the impact of PEF treatment on the plant tissues found in plant-based foods, few studies have investigated the influence of PEF on plant structures that are made up of multiple structurally similar organs. The aim of this study was to understand the effect of pulsed electric fields (PEF), at different electric field strengths (0, 0.3, 0.7 and 1.2 kV/cm) and specific energy (7, 21 and 52 kJ/kg), on a multilayered plant material, with bunching onion bulb tissues being used as a model system. The present study found that carbohydrates leakage was an appropriate index to assess PEF induced damage and that plasmolysis of epidermal cells was a good indicator of plasma membrane integrity after PEF. In addition, electric field strength had a greater impact on the cell integrity than specific energy applied. While other studies have shown that different cell types have different sensitivities to PEF, using plasmolysis as an indicator of cell damage, this study clearly showed that the same PEF treatment conditions had a greater effect on the epidermal cells of the outer scales compared to the inner scales. Hence, while different plant cell types vary in their sensitivities to PEF the spatial location of the same cell type within a complex plant material made up of multiple similar organs, i.e. an onion bulb, can also influence how cells respond to the PEF treatment. Despite PEF induced disruption at the cellular level being detected by carbohydrate leakage, the epidermal cell plasmolysis test and by cryo-scanning electromicroscopy (cryo-SEM), no gross structural changes at the organ level were observed using cryo-SEM or fluorescence microscopy. This study also reports for the first time that PEF treatment can enhance fructan leakage from onion bulbs, which means that PEF treatments have the potential to manipulate the fructan contents of some plant-based foods.


Subject(s)
Food Handling/methods , Models, Biological , Onions , Electricity , Fructans/analysis , Onions/chemistry , Onions/radiation effects
2.
Food Chem ; 245: 890-898, 2018 Apr 15.
Article in English | MEDLINE | ID: mdl-29287457

ABSTRACT

The aims of this research were to investigate if pulsed electric field (PEF) treatments caused cellular/structural alterations in Oxalis tuberosa (oca) tubers and if PEF treatment could reduce tuber oxalate levels. Whole oca tubers were treated with PEF at different electric field strengths up to 1.2 kV/cm. PEF treatments above 0.5 kV/cm caused tubers to soften, but differences in the electrical properties of the tuber tissues led to an uneven PEF effect with the tuber inner cores softening more than the middle regions. Cell viability tests confirmed the unevenness of the PEF effect, however PEF caused no changes in overall tuber/tissue structure. Even at high electric field strengths the cell remained largely intact and most starch grains were retained within the cells. Despite the retention of starch, PEF treatment reduced tuber oxalate contents by almost 50% in some tissues and could potentially aid the development of low oxalate oca-based foods.


Subject(s)
Oxalates/analysis , Oxalidaceae/chemistry , Oxalidaceae/radiation effects , Starch/analysis , Electricity , Food Handling , Plant Tubers/chemistry , Plant Tubers/radiation effects
3.
Sci Rep ; 6: 25306, 2016 05 05.
Article in English | MEDLINE | ID: mdl-27147445

ABSTRACT

The influence of pulsed electric field (PEF) (0.5-2 kV/cm) treatment of wheatgrass (Triticum aestivum L.) seeds, with different water contents, on antioxidant metabolism in the resultant seedlings was investigated. Imbibing seeds to a water content of 45% or greater prior to PEF treatment increased the glutathione level and activities of superoxide dismutase, catalase, glutathione reductase, glutathione peroxidase and ascorbate peroxidase in the resultant seedlings, compared to untreated controls. Pre-culture of human intestinal Caco-2 cells with simulated gastrointestinal digests of electrostimulated seedlings enhanced the ability of Caco-2 cells to cope with H2O2-induced oxidative damage, determined by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and lactate dehydrogenase (LDH) release assays. The Caco-2 cell MTT and LDH assays correlated better with the increases in seedling glutathione content and antioxidant enzyme activities compared to the 2, 2-diphenyl-1-picrylhydrazyl (DPPH) total antioxidant capacity assay, an assay commonly used to determine the ability of plant extracts to protect cells from oxidative damage. These results demonstrate for the first time that PEF treatment of imbibed seeds can stimulate changes in metabolism in the resultant seedlings, increasing the bioprotective potential of their shoots/sprouts and hence value as functional foods.


Subject(s)
Antioxidants/metabolism , Hydrogen Peroxide/adverse effects , Oxidation-Reduction/drug effects , Triticum/physiology , Antioxidants/pharmacology , Ascorbate Peroxidases/metabolism , Caco-2 Cells , Catalase/metabolism , Electric Stimulation , Glutathione/metabolism , Glutathione Peroxidase/metabolism , Glutathione Reductase/metabolism , Humans , Plant Proteins/metabolism , Plant Proteins/pharmacology , Plant Shoots/metabolism , Plant Shoots/physiology , Seedlings/metabolism , Seedlings/physiology , Superoxide Dismutase/metabolism , Triticum/metabolism
4.
Food Chem ; 196: 654-64, 2016 Apr 01.
Article in English | MEDLINE | ID: mdl-26593539

ABSTRACT

This research aimed to study the effect of pulsed electric field (PEF) processing on the bioprotective capacity of carrot purée for White Belgian, Yellow Solar, Nantes, Nutri Red and Purple Haze cultivars against H2O2-induced oxidative damage. The bioprotective capacity was determined using cell viability, membrane integrity and nitric oxide (NO) production in a human Caco-2 cell culture assay. Total carotenoids, total anthocyanins, total vitamin C and total phenolics were also evaluated. Compared to the untreated purée, Purple Haze and Nutri Red processed at 303 kJ/kg completely increased Caco-2 cells resistance towards oxidative damage by recovering the cell viability and inhibiting NO production. For cultivar with low carotenoid levels, i.e. Yellow Solar, the application of 0.8 kV/cm resulted in a higher total carotenoid content in the purée than its untreated counterpart, leading to an improved bioprotective effect. This study clearly shows that PEF could add value to carrots by maximising bioprotective effects.


Subject(s)
Daucus carota/chemistry , Hydrogen Peroxide/metabolism , Oxidative Stress , Plant Preparations/metabolism , Anthocyanins/chemistry , Anthocyanins/metabolism , Ascorbic Acid/chemistry , Ascorbic Acid/metabolism , Caco-2 Cells , Carotenoids/chemistry , Carotenoids/metabolism , Cell Survival , Daucus carota/classification , Daucus carota/metabolism , Electricity , Humans , Phenols/chemistry , Phenols/metabolism , Plant Preparations/chemistry , Vitamins/chemistry , Vitamins/metabolism
5.
Food Chem ; 196: 833-41, 2016 Apr 01.
Article in English | MEDLINE | ID: mdl-26593562

ABSTRACT

This study evaluated the health-promoting properties of Pinot Noir juices (Vitis vinifera L.) obtained at different maceration times after pulsed electric fields (PEF) using 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging and human intestinal Caco-2 cells assays. Juice quality, anthocyanins, total phenolics and vitamin C were also determined. The evaluation of bioprotective capacity of the juice against H2O2-induced oxidative stress in Caco-2 cells was determined using biomarkers for cellular health and integrity: cell viability and lactate dehydrogenase (LDH) leakage. Compared to untreated grape juice, PEF pre-treatment on grapes enhanced the release of the major anthocyanin found in Pinot Noir, i.e. malvidin-3-O-glucoside (+224%). Increase in the content of total phenolic (+61%) and vitamin C (+19%) as well as improvement in the DPPH scavenging activity (+31%) and bioprotective capacity (+25% for cell viability and +30% for LDH leakage) were observed in grape juices following PEF treatment. Bioprotective capacity determined by the cellular biomarkers had significant linear correlations with malvidin-3-O-glucoside content (0.71⩽r⩽0.73) whereas DPPH scavenging activity was not well correlated with malvidin-3-O-glucoside (r=0.30) and total phenolics (r=0.30). Therefore, evaluation of the bioprotective capacities using Caco-2 cell assay performed in this study makes a novel contribution to the current knowledge that demonstrates the capability of PEF technology to produce plant-based foods with better phytochemical composition and exhibiting the capacity to protect cells from oxidative stress.


Subject(s)
Anthocyanins/chemistry , Caco-2 Cells/chemistry , Fruit/chemistry , Phenols/chemistry , Vitis/chemistry , Antioxidants , Electromagnetic Fields , Humans , Oxidative Stress , Phenols/analysis
6.
Food Chem ; 138(2-3): 1360-9, 2013 Jun 01.
Article in English | MEDLINE | ID: mdl-23411255

ABSTRACT

The purpose of this research was to understand the degradation of ascorbic acid and glutathione content in broccoli florets (Brassica oleracea L. italica cv. Bellstar) during prolonged storage and subsequent mechanical processing. The initial content of total ascorbic acid and glutathione in broccoli florets averaged at 5.18 ± 0.23 and 0.70 ± 0.03 µmol/g fresh weight, respectively. Results showed that the content of ascorbic acid and glutathione in broccoli degraded during storage at 23°C, for at least 4.5-fold after 6 days of storage. On each day of storage, broccoli florets were mechanically processed, but the content of total ascorbic acid and glutathione was not significantly affected. When the mechanically processed broccoli florets were further incubated for up to 6h, the amount of ascorbic acid was greatly reduced as compared to glutathione. To obtain an in-depth understanding on the degradation of ascorbic acid and glutathione, the activity of enzymes involved in plant antioxidative system via ascorbate-glutathione cycle, as a response towards oxidative stress that took place during storage was determined in this study. The content of total ascorbic acid and glutathione in broccoli florets before and after mechanical processing were found to decrease concurrently with the activity of ascorbic acid peroxidase and glutathione reductase over the experimental storage duration. Meanwhile, the effect of oxidative stress on the content of ascorbic acid and glutathione was apparent during the 6h of incubation after mechanical processing. This phenomenon was demonstrated by the level of oxidative stress biomarkers examined, in which the formation of lipid peroxides, protein carbonyls and DNA oxidised products was positively associated with the degradation of total ascorbic acid and glutathione.


Subject(s)
Ascorbic Acid/metabolism , Biomarkers/metabolism , Brassica/metabolism , Glutathione/metabolism , Oxidative Stress , Ascorbic Acid/chemistry , Biomarkers/chemistry , Brassica/chemistry , Food Handling , Food Storage , Glutathione/chemistry , Kinetics
7.
Plant Cell Environ ; 31(10): 1416-31, 2008 Oct.
Article in English | MEDLINE | ID: mdl-18643958

ABSTRACT

The polycyclic aromatic hydrocarbon (PAH) phenanthrene (PHEN) is a highly toxic pollutant, commonly found in aquatic environments, the effects of which on aquatic plants have not been studied in depth. As PAHs are known to induce oxidative stress and recent studies have shown that polyamines (PAs) participate in the defence reactions protecting plants against environmental stresses, PA metabolism and oxidative damage were investigated in the aquatic form of the liverwort Riccia fluitans L. exposed to PHEN. Exposure of Riccia fluitans plants to PHEN at concentrations of 0.5 microm or less induced oxidative stress, but at a level from which plants could recover. Despite increased levels of enzymatic and non-enzymatic antioxidants, recovery appeared, at least in part, due to increased synthesis of PAs, achieved via increased activities of the enzymes arginine decarboxylase (ADC) and S-adenosylmethionine decarboxylase (SAMDC). Chemical inhibition of these enzymes inhibited plant recovery, while treatment with PAs aided recovery. Finally, as chloroplasts and the plasma membrane appeared to be key targets for PHEN-induced damage, the potential roles of PAs in protecting these cellular components were considered. How PAs could protect plant cells from serious environmental pollutants such as PHEN and could prevent oxidative stress is discussed.


Subject(s)
Hepatophyta/drug effects , Oxidative Stress , Phenanthrenes/toxicity , Polyamines/metabolism , Adenosylmethionine Decarboxylase/metabolism , Carboxy-Lyases/metabolism , Carotenoids/chemistry , Cell Membrane/drug effects , Chlorophyll/chemistry , Chloroplasts/drug effects , Chromatography, High Pressure Liquid , Environmental Pollutants/toxicity , Hepatophyta/metabolism , Hydrogen Peroxide/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...