Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Chem Chem Phys ; 21(44): 24666-24673, 2019 Nov 28.
Article in English | MEDLINE | ID: mdl-31674623

ABSTRACT

Spin-coating of poly(ethylenimine) (PEI) has been used to reduce the work function of GaAs (001), (110), (111)A and (111)B. The magnitude of the reduction immediately after coating varies significantly from 0.51 eV to 0.69 eV and depends on the surface crystal face, on the GaAs bulk doping and on the atomic termination of the GaAs. For all samples, the work function reduction shrinks in ambient air over the first 20 hours after spin coating, but reductions around 0.2-0.3 eV persist after 1 year of storage in air. Core-level photoemission of thin film PEI degradation in air is consistent with a two-stage reaction with CO2 and H2O previously proposed in carbon capture studies. The total surface dipole from PEI coating is consistent with a combination of internal neutral amine dipole and an interface dipole whose magnitude depends on the surface termination. The contact potential difference measured by Kelvin probe force microscopy on a cleaved GaAs heterostructure is smaller on p-doped regions. This can be explained by surface doping due to the PEI, which increases the band bending on p-doped GaAs where Fermi level pinning is weak. Both surface doping and surface dipole should be accounted for when considering the effect of PEI coated on a semiconductor surface.

2.
Sci Rep ; 6: 37282, 2016 11 21.
Article in English | MEDLINE | ID: mdl-27869132

ABSTRACT

Halfmetal-semiconductor interfaces are crucial for hybrid spintronic devices. Atomically sharp interfaces with high spin polarisation are required for efficient spin injection. In this work we show that thin film of half-metallic full Heusler alloy Co2FeSi0.5Al0.5 with uniform thickness and B2 ordering can form structurally abrupt interface with Ge(111). Atomic resolution energy dispersive X-ray spectroscopy reveals that there is a small outdiffusion of Ge into specific atomic planes of the Co2FeSi0.5Al0.5 film, limited to a very narrow 1 nm interface region. First-principles calculations show that this selective outdiffusion along the Fe-Si/Al atomic planes does not change the magnetic moment of the film up to the very interface. Polarized neutron reflectivity, x-ray reflectivity and aberration-corrected electron microscopy confirm that this interface is both magnetically and structurally abrupt. Finally, using first-principles calculations we show that this experimentally realised interface structure, terminated by Co-Ge bonds, preserves the high spin polarization at the Co2FeSi0.5Al0.5/Ge interface, hence can be used as a model to study spin injection from half-metals into semiconductors.

3.
Cryst Growth Des ; 13(11): 4923-4929, 2013 Nov 06.
Article in English | MEDLINE | ID: mdl-24409091

ABSTRACT

Molecular beam epitaxial growth of ferromagnetic MnSb(0001) has been achieved on high quality, fully relaxed Ge(111)/Si(111) virtual substrates grown by reduced pressure chemical vapor deposition. The epilayers were characterized using reflection high energy electron diffraction, synchrotron hard X-ray diffraction, X-ray photoemission spectroscopy, and magnetometry. The surface reconstructions, magnetic properties, crystalline quality, and strain relaxation behavior of the MnSb films are similar to those of MnSb grown on GaAs(111). In contrast to GaAs substrates, segregation of substrate atoms through the MnSb film does not occur, and alternative polymorphs of MnSb are absent.

SELECTION OF CITATIONS
SEARCH DETAIL
...