Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Ecol Lett ; 26(7): 1237-1246, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37161930

ABSTRACT

Fire-vegetation feedbacks potentially maintain global savanna and forest distributions. Accordingly, vegetation in savanna and forest ecosystems should have differential responses to fire, but fire response data for herbaceous vegetation have yet to be synthesized across biomes. Here, we examined herbaceous vegetation responses to experimental fire at 30 sites spanning four continents. Across a variety of metrics, herbaceous vegetation increased in abundance where fire was applied, with larger responses to fire in wetter and in cooler and/or less seasonal systems. Compared to forests, savannas were associated with a 4.8 (±0.4) times larger difference in herbaceous vegetation abundance for burned versus unburned plots. In particular, grass cover decreased with fire exclusion in savannas, largely via decreases in C4 grass cover, whereas changes in fire frequency had a relatively weak effect on grass cover in forests. These differential responses underscore the importance of fire for maintaining the vegetation structure of savannas and forests.


Subject(s)
Ecosystem , Fires , Grassland , Trees/physiology , Forests , Climate
2.
J Environ Manage ; 331: 117234, 2023 Apr 01.
Article in English | MEDLINE | ID: mdl-36646040

ABSTRACT

Indigenous Australians used fire in spinifex deserts for millennia. These practices mostly ceased following European colonisation, but many contemporary Indigenous groups seek to restore 'right-way fire' practices, to meet inter-related social, economic, cultural and biodiversity objectives. However, measuring and reporting on the fire pattern outcomes of management is challenging, because the spatio-temporal patterns of right-way fire are not clearly defined, and because spatio-temporal variability in rainfall makes fire occurrence highly variable in these desert environments. We present an approach for measuring and reporting on fire management outcomes to account for spatio-temporal rainfall variability. The purpose is to support Indigenous groups to assess performance against their management targets, and lay the groundwork for developing an accredited method for valuing combined social, cultural and biodiversity outcomes. We reviewed fire management plans of desert Indigenous groups to identify spatial fire pattern indicators for right-way fire in spinifex deserts. We integrated annual rainfall surfaces with time-since fire mapping (using Landsat imagery) to create a new spatial dataset of accumulated rainfall-since-last-fire, that better represents post-fire vegetation recovery as categorised by local Indigenous people. The fire pattern indicators were merged into a single score using an environmental accounting approach. To strengthen interpretation, we developed an approach for identifying a control area with matching vegetation and fire history, up to the point of management. We applied these methods to a 125,000 ha case study area: Durba Hills, managed by the Martu people of Western Australia. Using a 20-year time series, we show that since right-way fire management at Durba Hills was re-introduced (2009), the fire pattern indicators have improved compared to those in the matched control area, and the composite result is closer to the fine-scaled mosaic of right-way fire pattern targets. Our approach could be used by Indigenous groups to track performance, and inform annual fire management planning. As the indicators are standardised for rainfall variation, results from multiple sites can be aggregated to track changes in performance at larger scales. Finally, our approach could be adapted for other fire-prone areas, both in Australia and internationally with high spatio-temporal rainfall variability, to improve management planning and evaluation.


Subject(s)
Biodiversity , Ecosystem , Humans , Australia , Poaceae , Time Factors
3.
Environ Manage ; 45(6): 1332-43, 2010 Jun.
Article in English | MEDLINE | ID: mdl-20405126

ABSTRACT

Regular fuel reduction burning is an important management strategy for reducing the scale and intensity of wildfires in south-west Australian native forests, but the long term effects of this on tree and stand growth are not well understood. Five fire treatments, including application of frequent and infrequent low intensity burns, and 25 years of fire exclusion, were applied to small (4 ha) experimental plots in a low rainfall mixed jarrah (Eucalyptus marginata) and marri (Corymbia calophylla) forest to investigate the effects of these treatments on tree stem diameter growth, stand basal area increment and tree mortality. Mean tree stem growth measured over 20 years was lowest in the long unburnt treatment compared with the burn treatments, although surface soil nutrient levels were generally higher in the unburnt treatment, suggesting these sites may be moisture limited. There was no clear pattern of the effects of the burn treatments, including the number of fires and the interval between fires, on tree stem growth, stand basal area increment, crown health or mortality. These factors were strongly influenced by dominance condition, with dominant and co-dominant trees growing most and suppressed trees growing least and experiencing the highest mortality levels. There was no evidence of deteriorating tree or stand health that could be attributed to either regular low intensity burning or to a long period (25 years) of fire exclusion.


Subject(s)
Fires , Trees , Australia , Conservation of Natural Resources/statistics & numerical data
SELECTION OF CITATIONS
SEARCH DETAIL
...