Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Biol Chem ; 300(4): 107146, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38460939

ABSTRACT

The polybromo, brahma-related gene 1-associated factors (PBAF) chromatin remodeling complex subunit polybromo-1 (PBRM1) contains six bromodomains that recognize and bind acetylated lysine residues on histone tails and other nuclear proteins. PBRM1 bromodomains thus provide a link between epigenetic posttranslational modifications and PBAF modulation of chromatin accessibility and transcription. As a putative tumor suppressor in several cancers, PBRM1 protein expression is often abrogated by truncations and deletions. However, ∼33% of PBRM1 mutations in cancer are missense and cluster within its bromodomains. Such mutations may generate full-length PBRM1 variant proteins with undetermined structural and functional characteristics. Here, we employed computational, biophysical, and cellular assays to interrogate the effects of PBRM1 bromodomain missense variants on bromodomain stability and function. Since mutations in the fourth bromodomain of PBRM1 (PBRM1-BD4) comprise nearly 20% of all cancer-associated PBRM1 missense mutations, we focused our analysis on PBRM1-BD4 missense protein variants. Selecting 16 potentially deleterious PBRM1-BD4 missense protein variants for further study based on high residue mutational frequency and/or conservation, we show that cancer-associated PBRM1-BD4 missense variants exhibit varied bromodomain stability and ability to bind acetylated histones. Our results demonstrate the effectiveness of identifying the unique impacts of individual PBRM1-BD4 missense variants on protein structure and function, based on affected residue location within the bromodomain. This knowledge provides a foundation for drawing correlations between specific cancer-associated PBRM1 missense variants and distinct alterations in PBRM1 function, informing future cancer personalized medicine approaches.


Subject(s)
DNA-Binding Proteins , Mutation, Missense , Neoplasms , Protein Domains , Transcription Factors , Humans , Cell Proliferation , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/genetics , DNA-Binding Proteins/chemistry , Ligands , Neoplasms/genetics , Neoplasms/metabolism , Neoplasms/pathology , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Nuclear Proteins/chemistry , Protein Binding , Transcription Factors/genetics , Transcription Factors/metabolism , Transcription Factors/chemistry , Models, Molecular , Protein Structure, Tertiary
2.
Molecules ; 29(5)2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38474697

ABSTRACT

Sirtuins are NAD+-dependent protein deacylases and key metabolic regulators, coupling the cellular energy state with selective lysine deacylation to regulate many downstream cellular processes. Humans encode seven sirtuin isoforms (Sirt1-7) with diverse subcellular localization and deacylase targets. Sirtuins are considered protective anti-aging proteins since increased sirtuin activity is canonically associated with lifespan extension and decreased activity with developing aging-related diseases. However, sirtuins can also assume detrimental cellular roles where increased activity contributes to pathophysiology. Modulation of sirtuin activity by activators and inhibitors thus holds substantial potential for defining the cellular roles of sirtuins in health and disease and developing therapeutics. Instead of being comprehensive, this review discusses the well-characterized sirtuin activators and inhibitors available to date, particularly those with demonstrated selectivity, potency, and cellular activity. This review also provides recommendations regarding the best-in-class sirtuin activators and inhibitors for practical research as sirtuin modulator discovery and refinement evolve.


Subject(s)
Sirtuins , Humans , Sirtuins/metabolism , Sirtuin 1 , Protein Isoforms/metabolism , Lysine
3.
Methods Enzymol ; 690: 109-129, 2023.
Article in English | MEDLINE | ID: mdl-37858527

ABSTRACT

ICEKAT (Interactive Continuous Enzyme Analysis Tool) is an interactive web-based program for calculating initial rates and kinetic parameters (e.g., Vmax, kcat, KM, EC50, IC50) from continuous enzyme kinetic assay data that satisfy Michaelis-Menten and steady-state kinetic assumptions. ICEKAT is valuable in educational and research settings to consistently and accurately calculate initial rates and kinetic parameters, increasing assay veracity and reproducibility. Provided freely online to the scientific community, ICEKAT has been cited in at least 26 publications, and the initial journal article has been accessed nearly 9000 times since its debut in 2020 (Olp et al., 2020). Here, we provide in-depth instructions for software use, offer vital considerations for data analysis, and highlight updated software features for new and existing users. Through ICEKAT, we aim for the analysis of data from continuous enzyme kinetic studies worldwide to become more rapid, reliable, and repeatable. ICEKAT remains free of charge and available to all scientists at https://icekat.herokuapp.com/icekat; the source code for local use is found at https://github.com/SmithLabMCW/icekat.


Subject(s)
Enzyme Assays , Software , Kinetics , Reproducibility of Results
4.
J Med Chem ; 65(20): 13714-13735, 2022 10 27.
Article in English | MEDLINE | ID: mdl-36227159

ABSTRACT

PBRM1 is a subunit of the PBAF chromatin remodeling complex that uniquely contains six bromodomains. PBRM1 can operate as a tumor suppressor or tumor promoter. PBRM1 is a tumor promoter in prostate cancer, contributing to migratory and immunosuppressive phenotypes. Selective chemical probes targeting PBRM1 bromodomains are desired to elucidate the association between aberrant PBRM1 chromatin binding and cancer pathogenesis and the contributions of PBRM1 to immunotherapy. Previous PBRM1 inhibitors unselectively bind SMARCA2 and SMARCA4 bromodomains with nanomolar potency. We used our protein-detected NMR screening pipeline to screen 1968 fragments against the second PBRM1 bromodomain, identifying 17 hits with Kd values from 45 µM to >2 mM. Structure-activity relationship studies on the tightest-binding hit resulted in nanomolar inhibitors with selectivity for PBRM1 over SMARCA2 and SMARCA4. These chemical probes inhibit the association of full-length PBRM1 to acetylated histone peptides and selectively inhibit growth of a PBRM1-dependent prostate cancer cell line.


Subject(s)
Histones , Prostatic Neoplasms , Male , Humans , Histones/metabolism , Protein Domains , Chromatin , Prostatic Neoplasms/drug therapy , Carcinogens , DNA Helicases/metabolism , Nuclear Proteins/metabolism , Transcription Factors/metabolism , DNA-Binding Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...